Skip to main content

Automatic Recognition of the Unconscious Reactions from Physiological Signals

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 7946)

Abstract

While the research in affective computing has been exclusively dealing with the recognition of explicit affective and cognitive states, carefully designed psychological and neuroimaging studies indicated that a considerable part of human experiences is tied to a deeper level of a psyche and not available for conscious awareness. Nevertheless, the unconscious processes of the mind greatly influence individuals’ feelings and shape their behaviors. This paper presents an approach for automatic recognition of the unconscious experiences from physiological data. In our study we focused on primary or archetypal unconscious experiences. The subjects were stimulated with the film clips corresponding to 8 archetypal experiences. Their physiological signals including cardiovascular, electrodermal, respiratory activities, and skin temperature were monitored. The statistical analysis indicated that the induced experiences could be differentiated based on the physiological activations. Finally, a prediction model, which recognized the induced states with an accuracy of 79.5%, was constructed.

Keywords

  • Affective computing
  • archetypes
  • the collective unconscious

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39062-3_2
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39062-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picard, R.W.: Affective computing, MIT Media Laboratory Perceptual Computing Section Technical Report No. 321 (1995)

    Google Scholar 

  2. Fairclough, S.H.: Fundamentals of physiological computing. Interacting with Computers 21, 133–145 (2009)

    CrossRef  Google Scholar 

  3. Novak, D., Mihelj, M., Munih, M.: A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interacting with Computers 24, 154–172 (2012)

    CrossRef  Google Scholar 

  4. Zhou, F., Qu, X., Helander, M.G., Jiao, J.(R.): Affect prediction from physiological measures via visual stimuli. International Journal of Human-Computer Studies 69, 801–819 (2011)

    Google Scholar 

  5. Wu, D., Courtney, C.G., Lance, B.J., Narayanan, S.S., Dawson, M.E., Oie, K.S., Parsons, T.D.: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task. IEEE Transactions on Affective Computing 1, 109–118 (2010)

    CrossRef  Google Scholar 

  6. Stickel, C., Ebner, M., Steinbach-Nordmann, S., Searle, G., Holzinger, A.: Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2009. LNCS, vol. 5614, pp. 615–624. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  7. Nisbett, R.E., Wilson, T.D.: Telling more than we can know: verbal reports on mental processes. Psychological Review 84, 231–259 (1977)

    CrossRef  Google Scholar 

  8. Van Gaal, S., Lamme, V.A.F.: Unconscious high-level information processing: implication for neurobiological theories of consciousness. The Neuroscientist 18, 287–301 (2012)

    CrossRef  Google Scholar 

  9. Bargh, J.A., Morsella, E.: The unconscious mind. Perspectives on Psychological Science 3, 73–79 (2008)

    CrossRef  Google Scholar 

  10. Rauterberg, M.: Emotions: The voice of the unconscious. In: Yang, H.S., Malaka, R., Hoshino, J., Han, J.H. (eds.) ICEC 2010. LNCS, vol. 6243, pp. 205–215. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  11. Sally, W.: Algorithms and archetypes: evolutionary psychology and Carl Jung’s theory of the collective unconscious. Journal of Social and Evolutionary Systems 17, 287–306 (1994)

    CrossRef  Google Scholar 

  12. Jung, C.G.: The archetypes and the collective unconscious. Princeton University Press, Princeton (1981)

    Google Scholar 

  13. Jung, C.G.: Man and his symbols. Doubleday, Garden City (1964)

    Google Scholar 

  14. Miller, N.E.: Some examples of psychophysiology and the unconscious. Applied Psychophysiology and Biofeedback 17, 3–16 (1992)

    Google Scholar 

  15. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical Report A-8, Gainesville, FL, USA (2008)

    Google Scholar 

  16. Bradley, M.M., Lang, P.J.: International affective digitized sounds (IADS): stimuli, instruction manual and affective ratings (Tech. Rep. No. B-2), Gainesville, FL, USA (1999)

    Google Scholar 

  17. Eich, E., Ng, J.T.W., Macaulay, D., Percy, A.D., Grebneva, I.: Combining music with thought to change mood. In: Coan, J.A., Allen, J.J.B. (eds.) The Handbook of Emotion Elicitation and Assessment, pp. 124–136. Oxford University Press, New York (2007)

    Google Scholar 

  18. Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cognition & Emotion 9, 87–108 (1995)

    CrossRef  Google Scholar 

  19. Rottenberg, J., Ray, R.D., Gross, J.J.: Emotion elicitation using films. In: Coan, J.A., Allen, J.J.B. (eds.) Handbook of Emotion Elicitation and Assessment, pp. 9–28. Oxford University Press, New York (2007)

    Google Scholar 

  20. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  21. Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178 (1980)

    CrossRef  Google Scholar 

  22. Ivonin, L., Chang, H.-M., Chen, W., Rauterberg, M.: A new representation of emotion in affective computing. In: Proceeding of 2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012), Taipei, Taiwan. Lecture Notes in Information Technology, pp. 337–343 (2012)

    Google Scholar 

  23. Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993)

    CrossRef  Google Scholar 

  24. Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing 3, 211–223 (2011)

    CrossRef  Google Scholar 

  25. Faber, M.A., Mayer, J.D.: Resonance to archetypes in media: there is some accounting for taste. Journal of Research in Personality 43, 307–322 (2009)

    CrossRef  Google Scholar 

  26. Hannan, D.: Coral sea dreaming: awaken. Roadshow Entertainment (2010)

    Google Scholar 

  27. Demme, J.: The silence of the lambs. Orion Pictures (1991)

    Google Scholar 

  28. Atkinson, R., Curtis, R.: Mr. Bean (season 1, episode 1). Pearson Television International (1990)

    Google Scholar 

  29. Allers, R., Minkoff, R.: The Lion King. Walt Disney Pictures (1994)

    Google Scholar 

  30. Zemeckis, R.: Forrest Gump. Paramount Pictures (1994)

    Google Scholar 

  31. Mendes, S.: American beauty. DreamWorks Pictures (1999)

    Google Scholar 

  32. Gibson, M.: Braveheart. 20th Century Fox (1995)

    Google Scholar 

  33. Aronofsky, D.: Black swan. Fox Searchlight Pictures (2010)

    Google Scholar 

  34. Hooper, T.: The king’s speech. The Weinstein Company (2010)

    Google Scholar 

  35. Almodóvar, P.: All about my mother. Warner Sogefilms (1999)

    Google Scholar 

  36. Fincher, D.: Fight club. 20th Century Fox (1999)

    Google Scholar 

  37. Campbell, J.: The hero with a thousand faces. New World Library, Novato (2008)

    Google Scholar 

  38. Maloney, A.: Preference ratings of images representing archetypal themes: an empirical study of the concept of archetypes. Journal of Analytical Psychology 44, 101–116 (2002)

    CrossRef  Google Scholar 

  39. Gronning, T., Sohl, P., Singer, T.: ARAS: archetypal symbolism and images. Visual Resources 23, 245–267 (2007)

    CrossRef  Google Scholar 

  40. Figner, B., Murphy, R.O.: Using skin conductance in judgment and decision making research. In: Schulte-Mecklenbeck, M., Kuehberger, A., Ranyard, R. (eds.) A Handbook of Process Tracking Methods for Decision Research, pp. 163–184. Psychology Press, New York (2011)

    Google Scholar 

  41. Piferi, R.L., Kline, K.A., Younger, J., Lawler, K.A.: An alternative approach for achieving cardiovascular baseline: viewing an aquatic video. International Journal of Psychophysiology 37, 207–217 (2000)

    CrossRef  Google Scholar 

  42. Neuman, M.R.: Vital signs: heart rate. IEEE Pulse 1, 51–55 (2010)

    MathSciNet  CrossRef  Google Scholar 

  43. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q.: ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering 46, 192–202 (1999)

    CrossRef  Google Scholar 

  44. Kreibig, S.D.: Autonomic nervous system activity in emotion: a review. Biological Psychology 84, 394–421 (2010)

    CrossRef  Google Scholar 

  45. Ramshur, J.T.: Design, evaluation, and application of heart rate variability software (HRVAS). Master’s thesis, The University of Memphis, Memphis, TN (2010)

    Google Scholar 

  46. Fairclough, S.H., Venables, L.: Prediction of subjective states from psychophysiology: a multivariate approach. Biological Psychology 71, 100–110 (2006)

    CrossRef  Google Scholar 

  47. Boiten, F.A.: The effects of emotional behaviour on components of the respiratory cycle. Biological Psychology 49, 29–51 (1998)

    CrossRef  Google Scholar 

  48. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Medical & Biological Engineering & Computing 42, 419–427 (2004)

    CrossRef  Google Scholar 

  49. Ekman, P., Levenson, R., Friesen, W.: Autonomic nervous system activity distinguishes among emotions. Science 221, 1208–1210 (1983)

    CrossRef  Google Scholar 

  50. O’Brien, R.G., Kaiser, M.K.: MANOVA method for analyzing repeated measures designs: an extensive primer. Psychological Bulletin 97, 316–333 (1985)

    CrossRef  Google Scholar 

  51. West, B.T., Welch, K.B., Galecki, A.T.: Linear mixed models: a practical guide using statistical software. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

  52. Cnaan, A., Laird, N.M., Slasor, P.: Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine 16, 2349–2380 (1997)

    CrossRef  Google Scholar 

  53. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter 12, 40 (2010)

    CrossRef  Google Scholar 

  54. Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A.: On applying approximate entropy to ECG signals for knowledge discovery on the example of big sensor data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 646–657. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  55. Kadous, M.W., Sammut, C.: Classification of multivariate time series and structured data using constructive induction. Machine Learning 58, 179–216 (2005)

    CrossRef  Google Scholar 

  56. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  57. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  58. Chan, F.K.: Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Transactions on Knowledge and Data Engineering 15, 686–705 (2003)

    CrossRef  Google Scholar 

  59. Geurts, P.: Pattern extraction for time series classification. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  60. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 228–233 (2001)

    CrossRef  Google Scholar 

  61. Ivonin, L., Chang, H.-M., Chen, W., Rauterberg, M.: Unconscious emotions: quantifying and logging something we are not aware of. Personal and Ubiquitous Computing 17, 663–673 (2013)

    CrossRef  Google Scholar 

  62. Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems 6, 156–166 (2005)

    CrossRef  Google Scholar 

  63. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1175–1191 (2001)

    CrossRef  Google Scholar 

  64. Sakr, G.E., Elhajj, I.H., Huijer, H.A.-S.: Support vector machines to define and detect agitation transition. IEEE Transactions on Affective Computing 1, 98–108 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ivonin, L., Chang, HM., Chen, W., Rauterberg, M. (2013). Automatic Recognition of the Unconscious Reactions from Physiological Signals. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds) Human Factors in Computing and Informatics. SouthCHI 2013. Lecture Notes in Computer Science, vol 7946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39062-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39062-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39061-6

  • Online ISBN: 978-3-642-39062-3

  • eBook Packages: Computer ScienceComputer Science (R0)