On the Plan-Library Maintenance Problem in a Case-Based Planner

  • Alfonso Emilio Gerevini
  • Anna Roubíčková
  • Alessandro Saetti
  • Ivan Serina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7969)


Case-based planning is an approach to planning where previous planning experience stored in a case base provides guidance to solving new problems. Such a guidance can be extremely useful when the new problem is very hard to solve, or the stored previous experience is highly valuable (because, e.g., it was provided and/or validated by human experts) and the system should try to reuse it as much as possible. However, as known in general case-based reasoning, the case base needs to be maintained at a manageable size, in order to avoid that the computational cost of querying it excessively grows, making the entire approach ineffective. We formally define the problem of case base maintenance for planning, discuss which criteria should drive a successful policy to maintain the case base, introduce some policies optimizing different criteria, and experimentally analyze their behavior by evaluating their effectiveness and performance.


Case Base Solution Plan Maintenance Policy Plan Stability Stochastic Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Bacchus, F., Kabanza, F.: Using temporal logic to express search control knowledge for planning. Artificial Intelligence 116(1-2), 123–191 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bäckström, C., Chen, Y., Jonsson, P., Ordyniak, S., Szeider, S.: The complexity of planning revisited – a parameterized analysis. In: 26th AAAI Conf. on AI (2012)Google Scholar
  4. 4.
    Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelligence 11, 625–655 (1996)CrossRefGoogle Scholar
  5. 5.
    Fern, A., Khardon, R., Tadepalli, P.: The first learning track of the int. planning competition. Machine Learning 84(1-2), 81–107 (2011)CrossRefGoogle Scholar
  6. 6.
    Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan repair. In: 16th Int. Conf. on AI Planning and Scheduling (2006)Google Scholar
  7. 7.
    Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. JAIR 20, 239–290 (2003)MATHGoogle Scholar
  8. 8.
    Gerevini, A., Saetti, A., Serina, I.: Case-based planning for problems with real-valued fluents: Kernel functions for effective plan retrieval. In: 20th European Conf. on AI (2012)Google Scholar
  9. 9.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice. Elsevier (2004)Google Scholar
  10. 10.
    Koenig, S.: Int. planning competition (2013),
  11. 11.
    Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 196–207. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Leake, D.B., Wilson, D.C.: Remembering why to remember: Performance-guided case-base maintenance. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 161–172. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Markovitch, S., Scott, P.D., Porter, B.: Information filtering: Selection mechanisms in learning systems. In: 10th Int. Conf. on Machine Learning, pp. 113–151 (1993)Google Scholar
  14. 14.
    Minton, S.: Quantitative results concerning the utility of explanation-based learning. Artificial Intelligence 42(2-3), 363–391 (1990)CrossRefGoogle Scholar
  15. 15.
    Muñoz-Avila, H.: Case-base maintenance by integrating case-index revision and case-retention policies in a derivational replay framework. Computational Intelligence 17(2), 280–294 (2001)CrossRefGoogle Scholar
  16. 16.
    Richter, S., Westphal, M.: The lama planner: Guiding cost-based anytime planning with landmarks. JAIR 39, 127–177 (2010)MATHGoogle Scholar
  17. 17.
    Serina, I.: Kernel functions for case-based planning. Artificial Intelligence 174(16-17), 1369–1406 (2010)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Smyth, B.: Case-base maintenance. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 507–516. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Smyth, B., Keane, M.T.: Adaptation-guided retrieval: Questioning the similarity assumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Smyth, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, p. 343. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Spalazzi, L.: A survey on case-based planning. AI Review 16(1), 3–36 (2001)MATHGoogle Scholar
  22. 22.
    Srivastava, B., Nguyen, T.A., Gerevini, A., Kambhampati, S., Do, M.B., Serina, I.: Domain independent approaches for finding diverse plans. In: 20th Int. Joint Conf. on AI (2007)Google Scholar
  23. 23.
    Zhu, J., Yang, Q.: Remembering to add: Competence-preserving case-addition policies for case-base maintenance. In: 16th Int. Joint Conf. on AI (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alfonso Emilio Gerevini
    • 1
  • Anna Roubíčková
    • 2
  • Alessandro Saetti
    • 1
  • Ivan Serina
    • 1
  1. 1.Dept. of Information EngineeringUniversity of BresciaBresciaItaly
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations