Skip to main content

Similarity Measures to Compare Episodes in Modeled Traces

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7969)

Abstract

This paper reports on a similarity measure to compare episodes in modeled traces. A modeled trace is a structured record of observations captured from users’ interactions with a computer system. An episode is a sub-part of the modeled trace, describing a particular task performed by the user. Our method relies on the definition of a similarity measure for comparing elements of episodes, combined with the implementation of the Smith-Waterman Algorithm for comparison of episodes. This algorithm is both accurate in terms of temporal sequencing and tolerant to noise generally found in the traces that we deal with. Our evaluations show that our approach offers quite satisfactory comparison quality and response time. We illustrate its use in the context of an application for video sequences recommendation.

Keywords

  • Similarity Measures
  • Modeled Traces
  • Recommendations
  • Edit Distance
  • Human Computer Interaction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-39056-2_26
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-39056-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   64.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)

    CrossRef  Google Scholar 

  2. Zarka, R., Champin, P.A., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: TStore: A Trace-Base Management System using Finite-State Transducer Approach for Trace Transformation. In: MODELSWARD 2013. SciTePress (2013)

    Google Scholar 

  3. Rieck, K.: Similarity measures for sequential data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(4), 296–304 (2011)

    Google Scholar 

  4. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)

    MathSciNet  Google Scholar 

  5. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  6. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    CrossRef  Google Scholar 

  7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)

    CrossRef  MATH  Google Scholar 

  8. Damashek, M.: Gauging Similarity with n-Grams: Language-Independent Categorization of Text. Science 267(5199), 843–848 (1995)

    CrossRef  Google Scholar 

  9. Watkins, C.: Dynamic Alignment Kernels. Advances in Large Margin Classifiers, 39–50 (January 1999)

    Google Scholar 

  10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text Classification using String Kernels. Journal of Machine Learning Research 2(3) (2002)

    Google Scholar 

  11. Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A Kernel for Time Series Based on Global Alignments. In: 2007 IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP 2007, vol. 2(i), pp. II-413–II-416 (2006)

    Google Scholar 

  12. Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  13. Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case Retrieval Reuse Net (CR2N): An Architecture for Reuse of Textual Solutions. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  14. Minor, M., Islam, M. S., Schumacher, P.: Confidence in Workflow Adaptation. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. Valls, J., Ontañón, S.: Natural Language Generation through Case-Based Text Modification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 443–457. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  16. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Information Systems (December 2012)

    Google Scholar 

  17. Settouti, L.S.: M-Trace-Based Systems - Models and languages for exploiting interaction traces. PhD thesis, University Lyon1 (2011)

    Google Scholar 

  18. Champin, P.A., Prié, Y., Mille, A.: MUSETTE: a framework for Knowledge from Experience. In: EGC 2004, RNTI-E-2, Cepadues Edition, pp. 129–134 (2004)

    Google Scholar 

  19. Kietzmann, J.H.: Social media? Get Serious! Understanding the Functional Building Blocks of Social Media 54 (2011)

    Google Scholar 

  20. Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance 26 (1999)

    Google Scholar 

  21. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A. (2013). Similarity Measures to Compare Episodes in Modeled Traces. In: Delany, S.J., Ontañón, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2013. Lecture Notes in Computer Science(), vol 7969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39056-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39056-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39055-5

  • Online ISBN: 978-3-642-39056-2

  • eBook Packages: Computer ScienceComputer Science (R0)