Abstract
This paper reports on a similarity measure to compare episodes in modeled traces. A modeled trace is a structured record of observations captured from users’ interactions with a computer system. An episode is a sub-part of the modeled trace, describing a particular task performed by the user. Our method relies on the definition of a similarity measure for comparing elements of episodes, combined with the implementation of the Smith-Waterman Algorithm for comparison of episodes. This algorithm is both accurate in terms of temporal sequencing and tolerant to noise generally found in the traces that we deal with. Our evaluations show that our approach offers quite satisfactory comparison quality and response time. We illustrate its use in the context of an application for video sequences recommendation.
Keywords
- Similarity Measures
- Modeled Traces
- Recommendations
- Edit Distance
- Human Computer Interaction
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)
Zarka, R., Champin, P.A., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: TStore: A Trace-Base Management System using Finite-State Transducer Approach for Trace Transformation. In: MODELSWARD 2013. SciTePress (2013)
Rieck, K.: Similarity measures for sequential data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(4), 296–304 (2011)
Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)
Damashek, M.: Gauging Similarity with n-Grams: Language-Independent Categorization of Text. Science 267(5199), 843–848 (1995)
Watkins, C.: Dynamic Alignment Kernels. Advances in Large Margin Classifiers, 39–50 (January 1999)
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text Classification using String Kernels. Journal of Machine Learning Research 2(3) (2002)
Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A Kernel for Time Series Based on Global Alignments. In: 2007 IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP 2007, vol. 2(i), pp. II-413–II-416 (2006)
Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476. Springer, Heidelberg (2005)
Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case Retrieval Reuse Net (CR2N): An Architecture for Reuse of Textual Solutions. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28. Springer, Heidelberg (2009)
Minor, M., Islam, M. S., Schumacher, P.: Confidence in Workflow Adaptation. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268. Springer, Heidelberg (2012)
Valls, J., Ontañón, S.: Natural Language Generation through Case-Based Text Modification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 443–457. Springer, Heidelberg (2012)
Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Information Systems (December 2012)
Settouti, L.S.: M-Trace-Based Systems - Models and languages for exploiting interaction traces. PhD thesis, University Lyon1 (2011)
Champin, P.A., Prié, Y., Mille, A.: MUSETTE: a framework for Knowledge from Experience. In: EGC 2004, RNTI-E-2, Cepadues Edition, pp. 129–134 (2004)
Kietzmann, J.H.: Social media? Get Serious! Understanding the Functional Building Blocks of Social Media 54 (2011)
Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance 26 (1999)
Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zarka, R., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A. (2013). Similarity Measures to Compare Episodes in Modeled Traces. In: Delany, S.J., Ontañón, S. (eds) Case-Based Reasoning Research and Development. ICCBR 2013. Lecture Notes in Computer Science(), vol 7969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39056-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-39056-2_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39055-5
Online ISBN: 978-3-642-39056-2
eBook Packages: Computer ScienceComputer Science (R0)