Similarity Measures to Compare Episodes in Modeled Traces

  • Raafat Zarka
  • Amélie Cordier
  • Elöd Egyed-Zsigmond
  • Luc Lamontagne
  • Alain Mille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7969)

Abstract

This paper reports on a similarity measure to compare episodes in modeled traces. A modeled trace is a structured record of observations captured from users’ interactions with a computer system. An episode is a sub-part of the modeled trace, describing a particular task performed by the user. Our method relies on the definition of a similarity measure for comparing elements of episodes, combined with the implementation of the Smith-Waterman Algorithm for comparison of episodes. This algorithm is both accurate in terms of temporal sequencing and tolerant to noise generally found in the traces that we deal with. Our evaluations show that our approach offers quite satisfactory comparison quality and response time. We illustrate its use in the context of an application for video sequences recommendation.

Keywords

Similarity Measures Modeled Traces Recommendations Edit Distance Human Computer Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)CrossRefGoogle Scholar
  2. 2.
    Zarka, R., Champin, P.A., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille, A.: TStore: A Trace-Base Management System using Finite-State Transducer Approach for Trace Transformation. In: MODELSWARD 2013. SciTePress (2013)Google Scholar
  3. 3.
    Rieck, K.: Similarity measures for sequential data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(4), 296–304 (2011)Google Scholar
  4. 4.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)MathSciNetGoogle Scholar
  5. 5.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  6. 6.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)CrossRefGoogle Scholar
  7. 7.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  8. 8.
    Damashek, M.: Gauging Similarity with n-Grams: Language-Independent Categorization of Text. Science 267(5199), 843–848 (1995)CrossRefGoogle Scholar
  9. 9.
    Watkins, C.: Dynamic Alignment Kernels. Advances in Large Margin Classifiers, 39–50 (January 1999)Google Scholar
  10. 10.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text Classification using String Kernels. Journal of Machine Learning Research 2(3) (2002)Google Scholar
  11. 11.
    Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A Kernel for Time Series Based on Global Alignments. In: 2007 IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP 2007, vol. 2(i), pp. II-413–II-416 (2006)Google Scholar
  12. 12.
    Sánchez-Marré, M., Cortés, U., Martínez, M., Comas, J., Rodríguez-Roda, I.: An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–476. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case Retrieval Reuse Net (CR2N): An Architecture for Reuse of Textual Solutions. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Minor, M., Islam, M. S., Schumacher, P.: Confidence in Workflow Adaptation. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Valls, J., Ontañón, S.: Natural Language Generation through Case-Based Text Modification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 443–457. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Information Systems (December 2012)Google Scholar
  17. 17.
    Settouti, L.S.: M-Trace-Based Systems - Models and languages for exploiting interaction traces. PhD thesis, University Lyon1 (2011)Google Scholar
  18. 18.
    Champin, P.A., Prié, Y., Mille, A.: MUSETTE: a framework for Knowledge from Experience. In: EGC 2004, RNTI-E-2, Cepadues Edition, pp. 129–134 (2004)Google Scholar
  19. 19.
    Kietzmann, J.H.: Social media? Get Serious! Understanding the Functional Building Blocks of Social Media 54 (2011)Google Scholar
  20. 20.
    Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance 26 (1999)Google Scholar
  21. 21.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raafat Zarka
    • 1
    • 2
  • Amélie Cordier
    • 1
    • 3
  • Elöd Egyed-Zsigmond
    • 1
    • 2
  • Luc Lamontagne
    • 4
  • Alain Mille
    • 1
    • 3
  1. 1.CNRSUniversité de LyonFrance
  2. 2.LIRIS, UMR5205INSA-LyonFrance
  3. 3.LIRIS, UMR5205Université Lyon 1France
  4. 4.Department of Computer Science and Software EngineeringUniversité LavalCanada

Personalised recommendations