Skip to main content

On Decidable and Computable Models of Theories

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

  • 1782 Accesses

Abstract

In this paper we obtain two results using amalgamation classes and Fraïssé limits. First, we construct a decidable theory T whose types are all decidable yet whose prime model is not decidable. Millar [15] constructed such example but his example uses an infinite language in an essential way. Our example uses one binary predicate symbol, that is, the models we construct are graphs. Second, for any finite lattice \(\cal F\) we construct a theory T with countably many models such that the fundamental order determined by T is isomorphic to \(\cal F\). As a by-product of this example, we propose the investigation of computable and decidable models of T by connecting them to the fundamental order of T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldwin, J., Berman, J.: Concrete representations of lattices and the fundamental order. Classification Theory, 24–31 (1987)

    Google Scholar 

  2. Csima, B., Kalimullin, I.: Degree spectra and immunity properties. Mathematical Logic Quarterly 56(1), 67–77 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gavruskin, A.: Computable limit models. In: Programs, Proofs, Processes—CiE, pp. 188–193 (2010)

    Google Scholar 

  4. Goncharov, S.: Strong constructivizability of homogeneous models. Algebra and Logic 17(4), 247–263 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goncharov, S., Ershov, Y.: Constructive Models. Consultants Bureau, New York (2000)

    MATH  Google Scholar 

  6. Goncharov, S., Nurtazin, A.: Constructive models of complete solvable theories. Algebra and Logic 12(2), 67–77 (1973)

    Article  Google Scholar 

  7. Greenberg, N., Montalbán, A., Slaman, T.: Relative to any non-hyperarithmetic set. preprint arXiv:1110.1907 (2011)

    Google Scholar 

  8. Harrington, L.: Recursively presentable prime models. The Journal of Symbolic Logic 39(2), 305–309 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirschfeldt, D.: Computable trees, prime models, and relative decidability. Proceedings of the American Mathematical Society 134(5), 1495–1498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hodges, W.: Model Theory. In: Encyclopaedia of Mathematics and Its Applications, vol. 42, Cambridge University Press (1993)

    Google Scholar 

  11. Khoussainov, B., Semukhin, P., Stephan, F.: Applications of Kolmogorov complexity to computable model theory. The Journal of Symbolic Logic 72(3), 1041–1054 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khoussainov, B., Nies, A., Shore, R.: Computable models of theories with few models. Notre Dame Journal of Formal Logic 38(2), 165–178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lange, K.: The degree spectra of homogeneous models. Journal of Symbolic Logic 73(3), 1009–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lascar, D., Poizat, B.: An introduction to forking. The Journal of Symbolic Logic 44(3), 330–350 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Millar, T.: Foundations of recursive model theory. Annals of Mathematical Logic 13, 45–72 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Millar, T.: Omitting types, type spectrums, and decidability. Journal of Symbolic Logic 48(1), 171–181 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morley, M.: Decidable Models. Israel Journal of Mathematics 25, 233–240 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peretyatkin, M.: On complete theories with a finite number of denumerable models. Algebra and Logic 12(5), 310–326 (1973)

    Article  MathSciNet  Google Scholar 

  19. Peretyatkin, M.: Criterion for strong constructivizability of a homogeneous model. Algebra and Logic 17(4), 290–301 (1978)

    Article  MathSciNet  Google Scholar 

  20. Poizat, B.: Attention a la Marche! Journal of Symbolic Logic 51(3), 570–585 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sacks, G.: Saturated model theory, 2nd edn. World Scientific Publishing Company Incorporated (2010)

    Google Scholar 

  22. Sudoplatov, S.: Complete theories with finitely many countable models I, II. Algebra and Logic 43(1), 62–69 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavruskin, A., Khoussainov, B. (2013). On Decidable and Computable Models of Theories. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics