Skip to main content

Historical and Technical Overview of SLF/ELF Electromagnetic Wave Propagation

  • Chapter
  • First Online:
  • 1311 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

In Chap. 1, we will attempt to address the historical and technical overview of the wave propagation and application in SLF (30–300 Hz) and ELF (below 30 Hz) ranges. Considering the similarity between the propagation of SLF/ELF waves and that of VLF wave, the VLF waveguide propagation theory and its applications in submarine communication was introduced, especially including the work by J.R. Wait. Then, we introduce the theory of SLF/ELF wave propagation in the space between the ground and the lower boundary of the ionosphere and some new developments in the researching topic, while the theory on ELF wave propagation along the ocean floor and the Marine Controlled Source Electromagnetics (mCSEM) Method is outlined. Additionally, some works on SLF/ELF emission as Earthquake precursor are addressed. Finally, the space borne VLF/SLF transmitting experiments and corresponding theoretical work are introduced, and some works on atmospheric noise in SLF/ELF ranges are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armand NA et al. (1988) Experimental researches in the ionosphere of the Earth of the radiation of loop antenna in a range VLF waves, installed onboard the orbital complex “Progress-28”–“Souz TM-2”. Radiotech Electron 33:2225–2233. (In Russian)

    Google Scholar 

  • Bannister PR (1974) Far-field extremely low frequency propagation measurements. IEEE Trans Commun 22(4):468–474

    Article  Google Scholar 

  • Bannister PR (1975) Project Sanguine quarterly technical summary, 1 July–30 September 1974. NUSC Technical Report, 4907

    Google Scholar 

  • Bannister PR (1984a) ELF propagation update. IEEE J Ocean Eng 9(3):179–188

    Article  Google Scholar 

  • Bannister PR (1984b) New simplified formulas for ELF subsurface-to-subsurface propagation. IEEE J Ocean Eng OE-9(3):154–163

    Article  Google Scholar 

  • Bannister PR et al. (1993) Orbiting transmitter and antenna for spaceborne communications at ELF/VLF to submerged submarines. AGARD Conf Proc 592:33.1–33.14

    Google Scholar 

  • Barr R, Rietueld MT, Stubbe P, Kopka H (1987) Ionospheric heater beam scanning: a mobile source of ELF radiation. Radio Sci 22(6):1073–1083

    Article  Google Scholar 

  • Barr R, Rietueld MT, Stubbe P, Kopka H (1988) Ionospheric heater beam scanning: a realistic model of this mobile source of ELF/VLF radiation. Radio Sci 23(3):379–388

    Article  Google Scholar 

  • Barrick DE (1999) Exact ULF/ELF dipole field strengths in the Earth–ionosphere cavity over the Schumann resonance region: idealized boundaries. Radio Sci 34(1):209–227

    Article  Google Scholar 

  • Behroozi-Toosi AB, Booker HG (1980) Application of a simplified theory of ELF propagation to a simplified worldwide model of the ionosphere. J Atmos Terr Phys 42:943–974

    Article  Google Scholar 

  • Bremmer H (1949) Terrestrial radio waves. Elsevier, New York

    Google Scholar 

  • Bubenik DM, Fraser-Smith AC (1978) ULF/ELF electromagnetic fields generated in a sea of finite depth by a submerged vertically directed harmonic magnetic dipole. Radio Sci 13:1011–1020

    Article  Google Scholar 

  • Budden KG (1961a) The wave-guide mode theory of wave propagation. Logos Press, London

    Google Scholar 

  • Budden KG (1961b) Radio waves in the ionosphere. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Burrows ML (1974a) Surface impedance and the efficiency of horizontal-dipole extremely low frequency (ELF) antenna arrays. IEEE Trans Commun 22(4):399–401

    Article  Google Scholar 

  • Burrows ML (1974b) Optimizing the current distribution in a buried linear antenna. IEEE Trans Commun 22(4):409–411

    Article  Google Scholar 

  • Chave AD, Cox CX (1982) Controlled electromagnetic sources for measuring electric conductivity beneath the oceans. I: Forward problem and model study. J Geophys Res 87(B7):5327–5338

    Article  Google Scholar 

  • Chave AD, Flosadóttir AH, Cox CS (1990) Some comments on seabed propagation of ULF/ELF electromagnetic fields. Radio Sci 25:825–836

    Article  Google Scholar 

  • Chen Y, Wang YX, Pan WY (2009) The incidence, reflection, and transmission of SLF/ELF waves by the ionosphere. Technical Report, China Research Institute of Radiowave Propagation, Qingdao, China

    Google Scholar 

  • Chrissan DA (1998) Statistical analysis and modeling of low-frequency radio noise and improvement of low-frequency communications. USA: ADA360417

    Google Scholar 

  • Chrissan DA, Fraser-Smith AC (1996a) Seasonal variations of globally measured ELF/VLF radio noise. Radio Sci 31(5):1141–1152

    Article  Google Scholar 

  • Chrissan DA, Fraser-Smith AC (1996b) Seasonal variations of globally measured SLF/VLF radio noise. Technical Report D177–1, ADA358414/XAB

    Google Scholar 

  • Chrissan DA et al (1997) Diurnal variations of globally measured SLF/VLF radio noise. USA: ADA358641

    Google Scholar 

  • Dunn JM (1984) Electromagnetic lateral waves in layered media. PhD dissertation, Harvard University, Cambridge, MA, USA

    Google Scholar 

  • Dunn JM (1986) Lateral wave propagation in a three-layered medium. Radio Sci 21(5):787–796

    Article  Google Scholar 

  • Edwards RN, Law LK, Wolfgram PA, Nobes DC, Bone MN, Trigg DF, Delaurier JM (1985) First results of the MOSES experiment; sea sediment conductivity and thickness determination, Bute Inlet, British Columbia, by magnetometric offshore electrical sounding. Geophysics 50(1):153–160

    Article  Google Scholar 

  • Einaudi F, Wait JR (1971) Analysis of the excitation of the Earth–ionosphere wave guide by a satellite-borne antenna. Can J Phys 49:447–457

    Article  Google Scholar 

  • Enge PK, Sawate DV (1988) Spread-spectrum multiple-access performance of orthogonal codes: impulsive noise. IEEE Trans Commun 36(1):98–106

    Article  Google Scholar 

  • Evans J, Griffiths A (1974) Design of a Sanguine noise processor based upon world-wide extremely low frequency (ELF) recordings. IEEE Trans Commun 22(4):528–539

    Article  Google Scholar 

  • Feldman DA (1972) An atmosphere noise model with applications to low frequency navigation systems. PhD thesis, Massachusetts Institute of Technology, Boston, USA

    Google Scholar 

  • Ferraro AJ, Lee HS, Allshouse R, Carroll K, Lunnen R, Collins T (1984) Characteristics of ionospheric ELF radiation generated by HF heating. J Atmos Terr Phys 46:855–865

    Article  Google Scholar 

  • Fraser-Smith AC, Bubenik DM (1979) ULF/ELF electromagnetic fields generated above a sea of finite depth by a submerged vertically directed harmonic magnetic dipole. Radio Sci 14:59–74

    Article  Google Scholar 

  • Fraser-Smith AC, Turtle JP (1993) ELF/VLF radio noise measurements at high latitudes during solar particle events. AGARD Conf Proc 529:161–168

    Google Scholar 

  • Fraser-Smith AC, Inan AS, Villard AG Jr, Joiner RG (1988) Seabed propagation of ULF/ELF electromagnetic fields from harmonic dipole sources location on the seafloor. Radio Sci 23:931–943

    Article  Google Scholar 

  • Galejs J (1961) Terrestrial extremely-low-frequency noise spectrum in the presence of exponential ionospheric conductivity profiles. J Geophys Res 66:2787–2793

    Article  Google Scholar 

  • Galejs J (1962) A further note on terrestrial extremely-low-frequency propagation in the presence of an isotropic ionosphere with an exponential conductivity-height profile. J Geophys Res 67:2715–2728

    Article  Google Scholar 

  • Galejs J (1964a) Propagation of VLF waves below a curved and stratified anisotropic ionosphere. J Geophys Res 69(17):3639–3650

    Article  MATH  Google Scholar 

  • Galejs J (1964b) Terrestrial extremely-low-frequency propagation. In: Bleil DF (ed) Natural electromagnetic phenomena below 30 kc/s. Plenum, New York, pp 205–258

    Chapter  Google Scholar 

  • Galejs J (1965) On the terrestrial propagation of ELF and VLF waves in the presence of a radial magnetic field. Radio Sci 69D(5):705–720

    Google Scholar 

  • Galejs J (1967) Propagation of VLF waves below an anisotropic stratified ionosphere with a transverse static magnetic field. Radio Sci 2(6):557–574

    Google Scholar 

  • Galejs J (1968) Propagation of ELF and VLF waves below an anisotropic ionosphere with a dipping static magnetic field. J Geophys Res 73(1):339–352

    Article  Google Scholar 

  • Galejs J (1972a) Terrestrial propagation of long electromagnetic waves. Pergamon, London

    Google Scholar 

  • Galejs J (1972b) Stable solutions of ionospheric fields in the propagation of ELF and VLF waves. Radio Sci 7(5):549–561

    Article  Google Scholar 

  • Ginsberg LH (1974) Extremely low frequency (ELF) atmospheric noise level statistics for project sanguine. IEEE Trans Commun 22(4):555–561

    Article  Google Scholar 

  • Gokhberg MB, Pilipenko VA, Pokhotelov OA (1983) Observation from a satellite of electromagnetic radiation above the region of earthquake in preparation. Dokl Akad Nauk SSSR 268(1):56–58

    Google Scholar 

  • Greifinger C, Grifinger P (1978) Approximate method for determining ELF eigenvalues in the Earth–ionosphere waveguide. Radio Sci 13:831–837

    Article  Google Scholar 

  • Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72:73–84

    Article  Google Scholar 

  • Guan HP, Liu GP (1995) The study on the relation between the electromagnetic anomaly of earthquake precursor and earthquake. ACtA Seismol Sin 17(2):237–246

    MathSciNet  Google Scholar 

  • Inan AS, Fraser-Smith AC, Villard OG Jr. (1986) ULF/ELF electromagnetic fields generated along the seafloor by a Straight current source of infinite length. Radio Sci 21(13):409–420

    Article  Google Scholar 

  • King RWP, Owens M, Wu TT (1992) Lateral electromagnetic waves: theory and applications to communications, geophysical exploration, and remote sensing. Springer, New York

    Book  Google Scholar 

  • Lee Boyce CO, Powell JD, Enge PK, Sherman CL (2003) A time domain atmospheric noise level analysis. In: Proceedings of the international Loran association 32rd annual meeting, Boulder, CO, USA

    Google Scholar 

  • Li K (1998) Radiation of a magnetic dipole in an infinite anisotropic medium. Chin Phys Lett 26(12):898–900

    Article  Google Scholar 

  • Li K, Pan WY (1997) Radiation of an electric dipole in an infinite anisotropic medium. Indian J Radio Space Phys 26:340–345

    Google Scholar 

  • Li K, Pan WY (1998) The VLF field on the sea surface generated by the transmitter antenna in the inhomogeneous ionosphere. Chin J Radio Sci 13(3):265–269. (In Chinese)

    MathSciNet  Google Scholar 

  • Li K, Pan WY (1999) Propagation of VLF electromagnetic waves penetrating the lower ionosphere. Indian J Radio Space Phys 28:87–94

    Google Scholar 

  • Li K, Zhang HQ, Pan WY (2004) The VLF electromagnetic field on the sea surface generated by a space borne loop antenna. J Electromagn Waves Appl 18(1):121–135

    Article  Google Scholar 

  • Li K, Sun XY, Zhai HT (2011) Propagation of ELF electromagnetic waves in the lower ionosphere. IEEE Trans Antennas Propag 59(2):661–666

    Article  MathSciNet  Google Scholar 

  • Lunnen RJ (1985) Detection of VLF and ELF long-path signals radiated from heated and modulated ionosphere current systems. PhD thesis, Penn State University, University Park

    Google Scholar 

  • Melnikov VM (1994) Large space constructions formed by centrifugal forces. Space Bull 1:13

    Google Scholar 

  • Meloni A, Palangio P, Fraser-Smith AC (1992) Some characteristics of the ELF/VLF radio noise measured near L’Aquila, Italy. IEEE Trans Antennas Propag 40:233–236

    Article  Google Scholar 

  • Molchanov O, Fedorov E, Schekotov A (2004) Lithosphere–atmosphere–ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat Hazards Earth Syst Sci 4:757–767

    Article  Google Scholar 

  • Morgunov UA, Matveev MY (1990) Electromagnetic emission on Spitak earthquake. Geophysics 6:14–191

    Google Scholar 

  • Nikiforova NN, Yudekhiu FN, Toktosopiev AM (1989) Studies of electromagnetic emission of seismotectonic origin in the Kirghiz SSR. Phys Earth Planet Inter 57(1–2):68–75

    Article  Google Scholar 

  • Pan WY (1985) Surface-wave propagation along the boundary between sea water and one-dimensionally anisotropic rock. J Appl Phys 58(11):3963–3974

    Article  Google Scholar 

  • Pan WY (1996) The VLF fields on the surface of the sea generated by the space borne transmitter. Chin J Space Sci 16(1):62–70. (In Chinese)

    Google Scholar 

  • Pappert RA, Moler WF (1974) Propagation theory and calculation at lower extremely low frequency. IEEE Trans Commun 22(4):438–451

    Article  Google Scholar 

  • Parrot M (1994) Statistical study of ELF/VLF emission recorded by a low-altitude satellite during seismic events. J Geophys Res 99(A12):23339–23347

    Article  Google Scholar 

  • Parrot M (2002) The micro-satellite DEMETER. J Geodyn 33:535–541

    Article  Google Scholar 

  • Peng HY, Tao W, Pan WY, Guo LX (2012) Numerical integral method for ELF fields excited by vertical electric dipole in asymmetric Earth–ionosphere cavity. Chin J Radio Sci 22(2):333–338. (In Chinese)

    Google Scholar 

  • Peng HY, Wu SH, Pan WY, Guo LX (2013) ELF fields excited by horizontal electric dipole in asymmetric Earth–ionosphere cavity. Submitted to Chin J Radio Sci. (In Chinese)

    Google Scholar 

  • Plessix RE, van der Sman P (2007) 3D CSEM modeling and inversion in complex geologic settings. In: Society of exploration geophysicists, September 23–28

    Google Scholar 

  • Schumann WO (1952a) On the radiation free self-oscillations of conducting sphere which is surrounded by an air layer and an ionospheric shell. Z Naturforsch 72:149–154. (In German)

    MathSciNet  Google Scholar 

  • Schumann WO (1952b) On the damping of electromagnetic self-oscillations of the system Earth–air–ionosphere. Z Naturforsch 72:250–252. (In German)

    MathSciNet  Google Scholar 

  • Serebryakova ON, Bdiehenko SV, Chmyrev VM (1992) Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites. Geophys Res Lett 19(2):91–94

    Article  Google Scholar 

  • Simpson JJ (2006) FDTD modeling of a novel ELF radar for major oil deposits using a three-dimensional geodesic grid of the Earth–ionosphere waveguide. IEEE Trans Antennas Propag 54(6):1734–1741

    Article  Google Scholar 

  • Simpson JJ (2009) Current and future applications of 3D global Earth–ionosphere models based on the full-vector Maxwell’s equations FDTD method. Surv Geophys 30(2):105–130

    Article  Google Scholar 

  • Simpson JJ, Taflove A (2004) Three-dimensional FDTD modeling of impulsive ELF antipodal propagation and Schumann resonance of the Earth-sphere. IEEE Trans Antennas Propag 52(2):443–451

    Article  MathSciNet  Google Scholar 

  • Simpson JJ, Taflove A (2007) A review of progress in FDTD Maxwell’s equations modeling of impulsive subionospheric propagation below 300 kHz. IEEE Trans Antennas Propag 55(6):1582–1590

    Article  Google Scholar 

  • Sommerfeld A (1949) Partial differential equations in physics. Academic Press, New York

    MATH  Google Scholar 

  • Tripathi VK, Chang CL, Papadopoulos K (1982) Excitation of the Earth–ionosphere wave guide by an ELF source in the ionosphere. Radio Sci 17:1321–1326

    Article  Google Scholar 

  • Uyeda S et al. (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc Natl Acad Sci 99(11):7352–7355

    Article  Google Scholar 

  • Valentino AR, Abromavage MM, Mclettan DW, Miller DA (1974) Project sanguine interference mitigation research. IEEE Trans Commun 22(4):562–569

    Article  Google Scholar 

  • Wait JR (1957) The mode theory of VLF ionosphere propagation for finite ground conductivity. Proc IRE 45(6):762–767

    Google Scholar 

  • Wait JR (1960) Terrestrial propagation of VLF radio waves—a theoretical investigation. J Res Natl Bur Stand 64D:153–203

    MathSciNet  Google Scholar 

  • Wait JR (1962a) Electromagnetic wave in stratified media. Pergamon, New York

    Google Scholar 

  • Wait JR (1962b) On the propagation of VLF and ELF radio waves when the ionosphere is not sharply bounded. J Res Natl Bur Stand 66D:53–61

    MathSciNet  Google Scholar 

  • Wait JR (1968) Recent theoretical advances in the terrestrial propagation of VLF electromagnetic waves. Adv Electron Electron Phys 25:145–209

    Article  Google Scholar 

  • Wait JR (1977) Propagation of ELF electromagnetic waves and project Sanguine/Seafarer. IEEE J Ocean Eng OE2:161–172

    Article  Google Scholar 

  • Wait JR, Spies KP (1965) Influence of finite ground conductivity on the propagation of VLF radio waves. Radio Sci J Res NBS/USNC-URSI 69D(10):1359–1373

    Google Scholar 

  • Wang YX, Fan WS, Pan WY, Zhang HQ (2007a) Spherical harmonic series solution of fields excited by vertical electric dipole in Earth–ionosphere cavity. Chin J Radio Sci 22(2):204–211. (In Chinese)

    Google Scholar 

  • Wang YX, Peng Q, Pan WY, Zhang HQ, Zhang ZW (2007b) The fields excited by SLF/ELF horizontal electric dipole in Earth–ionosphere cavity. Chin J Radio Sci 22(5):728–734. (In Chinese)

    Google Scholar 

  • Wang YX, Pan WY, Jin RH, Zhang HQ (2009b) Electromagnetic fields in spherical Earth–ionosphere excited by SLF/ELF underground horizontal electric dipole. Chin J Radio Sci 24(6):1002–1008. (In Chinese)

    Google Scholar 

  • Wang XQ, Pan WY, Zhang HQ, Ren Q (2009a) The global distribution of SLF atmospheric noise level and the comparisons to the measured data. Technical Report, China Research Institute of Radiowave Propagation, Qingdao, China. (In Chinese)

    Google Scholar 

  • Wang YX, Pan WY, Jin RH, Zhang ST (2010) Antarctic SLF/ELF radio atmospheric radio noise measure and research in China. In: The 9th international symposium on antennas, propagation and EM theory, Guangzhou, China, pp 525–528

    Chapter  Google Scholar 

  • Watt AD (1967) VLF radio engineering. Pergamon, London

    Google Scholar 

  • Young PD, Cox CS (1981) Electromagnetic active source sounding near the East Pacific Rise. Geophys Res Lett 8(10):1043–1046

    Article  Google Scholar 

  • Yu HY, Zhou HJ, Qiao XL (2010) Study on wave propagation of ELF emission anomaly before M s8.0 Wenchuan earthquake. Acta Seismol Sin 32(6):641–648. (In Chinese)

    Google Scholar 

  • Yuan Y (2011) Propagation and noise of SLF and ELF electromagnetic waves. National Defense Industry Press, Beijing. (In Chinese)

    Google Scholar 

  • Zach JJ, Bjorke AK, Storen T, Maao F (2008a) 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate hessian-based optimization. In: Society of exploration geophysicists, November 9–14

    Google Scholar 

  • Zach JJ, Roth F, Yuan H (2008b) Preprocessing of marine CSEM data and model preparation for frequency-domain 3D inversion. In: PIERS proceedings, Cambridge, USA, July 2–6, pp 144–148

    Google Scholar 

  • Zhang HQ, Chen Y, Pan WY (2009) Fields excited by earthquake ELF/SLF radiator on the ground and in the ionosphere. Chin J Radio Sci 24(3):432–439. (In Chinese)

    MATH  Google Scholar 

  • Zhang XM, Shen XH, Miao YQ (2012) Electromagnetic anomalies around Wenchuan earthquake and their relationship with earthquake preparation. Proc Environ Sci 12A:693–701

    Article  Google Scholar 

  • Zhima ZR et al. (2012) Possible ionospheric electromagnetic perturbations induced by the M s7.1 Yushu earthquake. Earth Moon Planets 108:231–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pan, W., Li, K. (2014). Historical and Technical Overview of SLF/ELF Electromagnetic Wave Propagation. In: Propagation of SLF/ELF Electromagnetic Waves. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39050-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39050-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39049-4

  • Online ISBN: 978-3-642-39050-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics