Single Probability

Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


The Binomial distribution and its properties are discussed in detail including maximum likelihood estimation of the probability \(p\). Exact and approximate hypothesis tests and confidence intervals are provided for \(p\). Inverse sampling and the Negative Binomial Distribution are also considered.


Bernoulli trials Maximum likelihood estimate Likelihood-ratio test Inverse sampling Negative-Binomial distribution Exact hypothesis test for a probability  Exact and approximate confidence intervals for a probability   Poisson approximation to the Binomial distribution 


  1. Agresti, A. (2007). An introduction to categorical data analysis. Hoboken, NJ: Wiley Interscience.CrossRefzbMATHGoogle Scholar
  2. Agresti, A., & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), 280–288.MathSciNetzbMATHGoogle Scholar
  3. Agresti, A., & Coull, B. A. (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistician, 52(2), 119–126.MathSciNetGoogle Scholar
  4. Berry, G., & Armitage, P. (1995). Mid-P confidence intervals: A brief review. The Statistician, 44(4), 417–423.CrossRefGoogle Scholar
  5. Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation of a binomial proportion. Statistical Science 16(2), 101–133.Google Scholar
  6. Brown, L. D., Cai, T. T., & DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30(1), 160–210.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Clopper, C., & Pearson, E. S. (1934). Ordered and unordered estimators in sampling without replacement. Sankhyā, 18, 379–390.Google Scholar
  8. Fay, M. P. (2010). Two-sided exact tests and matching confidence intervals for discrete data. The R Journal 2, 53–58. (See also
  9. Hirji, K. F. (2006). Exact analysis of discrete data. Boca Raton, FL: Taylor and Francis.zbMATHGoogle Scholar
  10. Hwang, J. T. G., & Yang, M.-C. (2001). An optimality theory for mid \(p\)-values in \(2 \times 2\) contingency tables. Statistica Sinica, 11, 807–826.MathSciNetzbMATHGoogle Scholar
  11. Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate discrete distributions (3rd ed.). New York: Wiley.CrossRefzbMATHGoogle Scholar
  12. Jowett, D. H. (1963). The relationship between the binomial and F distributions. The Statistician, 3(1), 55–57.CrossRefGoogle Scholar
  13. Murthy, M. N. (1957). Ordered and unordered estimators in sampling without replacement. Sankhyā, 18, 379–390.MathSciNetzbMATHGoogle Scholar
  14. Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine, 17(8), 857–872.Google Scholar
  15. Salehi, M. M., & Seber, G. A. F. (2001). A new proof of Murthy’s estimator which applies to sequential sampling. Australian and New Zealand Journal of Statistics, 43(3), 901–906.MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of StatisticsThe University of AucklandAucklandNew Zealand

Personalised recommendations