Advertisement

Single Proportion

Chapter
  • 1.9k Downloads
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

This chapter focusses on the problem of estimating a population proportion using random sampling with or without replacement, or inverse sampling. Exact and approximate confidence intervals are discussed using the Hypergeometric distribution. Applications to capture-recapture models are given.

Keywords

Proportion Hypergeometric distribution Simple random sample Sampling fraction Negative-Hypergeometric distribution Binomial distribution Confidence intervals for a proportion Single capture-recapture model 

References

  1. Buonaccorsi, J. P. (1987). A note on confidence intervals for proportions in finite populations. The American Statistician, 41, 215–218.MathSciNetGoogle Scholar
  2. Cochran, W. G. (1977). Sampling Techniques (3rd edn.). New York: Wiley.Google Scholar
  3. Murthy, M. N. (1957). Ordered and unordered estimators in sampling without replacement. Sankhyā, 18, 379–390.MathSciNetzbMATHGoogle Scholar
  4. Johnson, N.L., Kemp, A. W., & Kotz, S. (2005). Univariate discrete distributions (3rd edn.). New York: Wiley.Google Scholar
  5. Salehi, M. M., & Seber, G. A. F. (2001). A new proof of Murthy’s estimator which applies to sequential sampling. Australian and New Zealand Journal of Statistics, 43(3), 901–906.MathSciNetGoogle Scholar
  6. Seber, G. A. F. (1982). Estimation of animal abundance and related parameters (2nd edn.). London: Griffin. Reprinted by Blackburn Press, Caldwell, New Jersey, U.S.A. (2002).Google Scholar
  7. Seber, G. A. F., Huakau, J., & Simmons, D. (2000). Capture-recapture, epidemiology, and list mismatches: Two lists. Biometrics, 56, 1227–1232.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Wendell, J. P., & Schmee, J. (2001). Likelihood confidence intervals for proportions in finite populations. The American Statistician, 55, 55–61.MathSciNetCrossRefGoogle Scholar
  9. Wittes, J., & Sidel, V. W. (1968). A generalization of the simple capture-recapture model with applications to epidemiological research. Journal of Chronic Diseases, 21, 287–301.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of StatisticsThe University of AucklandAucklandNew Zealand

Personalised recommendations