Determining the Degree of Semantic Similarity Using Prototype Vectors

  • Mireya Tovar
  • David Pinto
  • Azucena Montes
  • Darnes Vilariño
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)

Abstract

Measuring the degree of semantic similarity for word pairs is very challenging task that has been addressed by the computational linguistics community in the recent years. In this paper, we propose a method for evaluating input word pairs in order to measure the degree of semantic similarity. This unsupervised method uses a prototype vector calculated on the basis of word pair representative vectors which are contructed by using snippets automatically gathered from the world wide web.

The obtained results shown that the approach based on prototype vectors outperforms the results reported in the literature for a particular semantic similarity class.

Keywords

Semantic similarity hierarchical relationships prototype vectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solís, S.: La Web Semántica. Lulu Enterprises Incorporated (2007)Google Scholar
  2. 2.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Technical Report KSL-93-04, Knowledge Systems Laboratory, USA (1993)Google Scholar
  3. 3.
    Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic relationships for wordnet by means of pattern learning from wikipedia. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 67–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Celli, F.: Unitn: Part-of-speech counting in relation extraction. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 198–201. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  5. 5.
    Chen, Y., Lan, M., Su, J., Zhou, Z.M., Xu, Y.: Ecnu: Effective semantic relations classification without complicated features or multiple external corpora. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 226–229. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  6. 6.
    Negri, M., Kouylekov, M.: Fbk_nk: A wordnetbased system for multiway classification of semantic relations. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 202–205. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  7. 7.
    Turney, P.D.: Similarity of semantic relations. Computational Linguistics 32, 379–416 (2006)MATHCrossRefGoogle Scholar
  8. 8.
    Jurgens, D.A., Mohammad, S.M., Turney, P.D., Holyoak, K.J.: Semeval-2012 task 2: Measuring degrees of relational similarity. In: Proceedings of the 6th International Workshop on Semantic Evaluation, SemEval 2012, Montreal, Canada (2012)Google Scholar
  9. 9.
    Bejar, I., Chaffin, R., Embretson, S.: Cognitive and psychometric analysis of analogical problem solving. Recent Research in Psychology. Springer (1991)Google Scholar
  10. 10.
    Lim, E.: Intelligent Systems Reference Library: Knowledge Seeker: Ontology Modelling for Information Search and Management - A Compendium. Intelligent Systems Reference Library. Springer (2011)Google Scholar
  11. 11.
    Harpring, P.: Introduction to Controlled Vocabularies: Terminology for Art, Architecture, and Other Cultural Works. Introduction To Series. Getty Research Institute (2010)Google Scholar
  12. 12.
    Organization, N. (U.S.), N.I.S.O.: Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies. National information standards series. NISO Press (2005)Google Scholar
  13. 13.
    Rink, B., Harabagiu, S.: Utd: Determining relational similarity using lexical patterns. In: Proceedings of the 6th International Workshop on Semantic Evaluation, SemEval 2012, June 7-8, pp. 413–418. Association for Computational Linguistics, Montréal (2012)Google Scholar
  14. 14.
    Pedersen, T.: Duluth: Measuring degrees of relational similarity with the gloss vector measure of semantic relatedness. In: Proceedings of the 6th International Workshop on Semantic Evaluation, SemEval 2012, June 7-8, pp. 497–501. Association for Computational Linguistics, Montréal (2012)Google Scholar
  15. 15.
    Tovar, M., Reyes, J.A., Montes, A., Vilariño, D., Pinto, D., León, S.: Buap: A first approximation to relational similarity measuring. In: Proceedings of the 6th International Workshop on Semantic Evaluation, SemEval 2012, June 7-8, pp. 502–505. Association for Computational Linguistics, Montréal (2012)Google Scholar
  16. 16.
    Karash, K., Board, N.R.C.U.T.R., Program, T.C.R., Administration, U.S.F.T., Corporation, T.D.: Understanding How Individuals Make Travel and Location Decisions: Implications for Public Transportation. Report (Transit Cooperative Research Program). Transportation Research Board (2008)Google Scholar
  17. 17.
    Orme, B.: Maxdiff analysis: Simple counting, individual-level logit, and hb. Technical report, Sawtooth Software. Research Paper Series (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mireya Tovar
    • 1
    • 2
  • David Pinto
    • 2
  • Azucena Montes
    • 1
    • 3
  • Darnes Vilariño
    • 2
  1. 1.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)Mexico
  2. 2.Faculty Computer ScienceBenemérita Universidad Autónoma de PueblaMexico
  3. 3.Engineering InstituteUniversidad Nacional Autónoma de MexicoMexico

Personalised recommendations