Skip to main content

Empirical Characterization of Camera Noise

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7914)


Noise characterization is important for several image processing operations such as denoising, thresholding, and HDR. This contribution describes a simple procedure to estimate the noise at an image for a particular camera as a function of exposure parameters (shutter time, gain) and of the irradiance at the pixel. Results are presented for a Pointgrey Firefly camera and are compared with a standard theoretical model of noise variance. Although the general characteristic of the noise reflects what predicted by the theoretical model, a number of discrepancies are found that deserve further investigation.


  • Noise Variance
  • Exposure Parameter
  • Gamma Correction
  • Exposure Setting
  • CMOS Image Sensor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Transactions on Image Processing 17(10), 1737–1754 (2008)

    MathSciNet  CrossRef  Google Scholar 

  2. Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.-P., Lensch, H.: Optimal HDR reconstruction with linear digital cameras. In: Proc. CVPR (2010)

    Google Scholar 

  3. Healey, G., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(3), 267–276 (1994)

    CrossRef  Google Scholar 

  4. Janesick, J.: Scientific charge-coupled devices. SPIE Press (2001)

    Google Scholar 

  5. Liu, C., Szeliski, R., Kang, S., Zitnick, C., Freeman, W.: Automatic estimation and removal of noise from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 299–314 (2008)

    CrossRef  Google Scholar 

  6. Rosin, P.: Thresholding for change detection. In: International Conference on Computer Vision, pp. 274–279 (1998)

    Google Scholar 

  7. Tian, H.: Noise Analysis in CMOS Image Sensors. PhD thesis, Stanford University (2000)

    Google Scholar 

  8. Tsin, Y., Ramesh, V., Kanade, T.: Statistical calibration of CCD imaging process. In: IEEE International Conference on Computer Vision (ICCV 2001) (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumgartner, J., Hinsche, M., Manduchi, R. (2013). Empirical Characterization of Camera Noise. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Rodríguez, J.S., di Baja, G.S. (eds) Pattern Recognition. MCPR 2013. Lecture Notes in Computer Science, vol 7914. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38988-7

  • Online ISBN: 978-3-642-38989-4

  • eBook Packages: Computer ScienceComputer Science (R0)