Skip to main content

Quantum Process Calculus for Linear Optical Quantum Computing

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

Abstract

We extend quantum process calculus in order to describe linear optical elements. In all previous work on quantum process calculus a qubit was considered as the information encoded within a 2 dimensional Hilbert space describing the internal states of a localised particle, most often realised as polarisation information of a single photon. We extend quantum process calculus by allowing multiple particles as information carriers, described by Fock states. We also consider the transfer of information from one particular qubit realisation (polarisation) to another (path encoding), and describe post-selection. This allows us for the first time to describe linear optical quantum computing (LOQC) in terms of quantum process calculus. We illustrate this approach by presenting a model of an LOQC CNOT gate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  2. IDQ: http://www.idquantique.com/company/presentation.html

  3. MagiQ: http://www.magiqtech.com/magiq/home.html

  4. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  Google Scholar 

  5. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264 (2003)

    Article  Google Scholar 

  6. Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    Article  Google Scholar 

  7. Gay, S.J., Nagarajan, R.: Communicating Quantum Processes. In: Proceedings of the 32nd Annual ACM Symposium on Principles of Programming Languages, pp. 145–157. ACM (2005)

    Google Scholar 

  8. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: CF 2004: Proceedings of the 1st Conference on Computing Frontiers, pp. 111–119. ACM Press (2004)

    Google Scholar 

  9. Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimilarities between quantum processes arXiv:cs.LO/0601014 (2006)

    Google Scholar 

  10. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

    Google Scholar 

  11. Myers, C.R., Laflamme, R.: Linear optics quantum computation: an overview arXiv: quant-ph/0512104v1 (2005)

    Google Scholar 

  12. Ralph, T.C., Lanford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-not gate in the coincidence basis. Physical Review Letters A 65, 62324–1 (2002)

    Google Scholar 

  13. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press (1999)

    Google Scholar 

  14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information and Computation 100(1), 1–40 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gay, S.J., Nagarajan, R.: Types and Typechecking for Communicating Quantum Processes. Mathematical Structures in Computer Science 16(3), 375–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calculus. PhD thesis, University of Warwick (2011)

    Google Scholar 

  17. Davidson, T.A.S., Gay, S.J., Nagarajan, R., Puthoor, I.V.: Analysis of a quantum error correcting code using quantum process calculus. EPTCS 95, 67–80 (2011)

    Article  Google Scholar 

  18. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Computation 115(1), 38–94 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franke-Arnold, S., Gay, S.J., Puthoor, I.V. (2013). Quantum Process Calculus for Linear Optical Quantum Computing. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics