Universal Gates in Other Universes

  • Jonathan A. Poritz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7948)


I describe a new formalization for computation which is similar to traditional circuit models but which depends upon the choice of a family of [semi]groups – essentially, a choice of the structure group of the universe of the computation. Choosing the symmetric groups results in the reversible version of classical computation; the unitary groups give quantum computation. Other groups can result in models which are stronger or weaker than the traditional models, or are hybrids of classical and quantum computation.

One particular example, built out of the semigroup of doubly stochastic matrices, yields classical but probabilistic computation, helping explain why probabilistic computation can be so fast. Another example is a smaller and entirely ℝeal version of the quantum one which uses a (real) rotation matrix in place of the (complex, unitary) Hadamard gate to create algorithms which are exponentially faster than classical ones.

I also articulate a conjecture which would help explain the different powers of these different types of computation, and point to many new avenues of investigation permitted by this model.


reversible computation quantum computation structure group universal families of gates unitary groups symmetric groups circuit models of computation probabilistic computation exponential speed-up 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barenco, A.: A universal two-bit gate for quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 449(1937), 679–683 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457 (1995)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A 5, 147–151 (1946)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer (1998)Google Scholar
  6. 6.
    Brylinski, J.L., Brylinski, R.: Universal quantum gates. Mathematics of Quantum Computation, 101–116 (2002)Google Scholar
  7. 7.
    Coecke, B.: New structures for physics, vol. 813. Springer (2010)Google Scholar
  8. 8.
    Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 400(1818), pp. 97–117 (1985)Google Scholar
  9. 9.
    Deutsch, D., Jozsa, R., Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London, vol. 439(1907), pp. 553–558 (1992)Google Scholar
  10. 10.
    DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Physical Review A 51(2), 1015 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3), 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice into fair coins. IEEE Transactions on Information Theory 46(3), 911–921 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lloyd, S.: Almost any quantum logic gate is universal. Physical Review Letters 75(2), 346–349 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Minc, H.: Nonnegative matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, New York (1988)zbMATHGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)Google Scholar
  16. 16.
    Shaltiel, R.: Recent developments in explicit constructions of extractors. Current Trends in Theoretical Computer Science: Algorithms and Complexity 1, 189 (2004)Google Scholar
  17. 17.
    Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, Springer, Heidelberg (1980)Google Scholar
  18. 18.
    Von Neumann, J.: Various techniques used in connection with random digits. Applied Math. Series 12, 36–38 (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan A. Poritz
    • 1
  1. 1.Department of Mathematics and PhysicsColorado State University - PuebloPuebloUSA

Personalised recommendations