Computing on Authenticated Data for Adjustable Predicates

  • Björn Deiseroth
  • Victoria Fehr
  • Marc Fischlin
  • Manuel Maasz
  • Nils Fabian Reimers
  • Richard Stein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

The notion of P-homomorphic signatures, introduced by Ahn et al. (TCC 2012), generalizes various approaches for public computations on authenticated data. For a given predicate P anyone can derive a signature for a message m′ from the signatures of a set of messages M, as long as P(M, m′) = 1. This definition hence comprises notions and constructions for concrete predicates P such as homomorphic signatures and redactable signatures.

In our work we address the question of how to combine Pi- homomorphic schemes for different predicates P1,P2,… to create a richer and more flexible class of supported predicates. One approach is to statically combine schemes for predicates into new schemes for logical formulas over the predicates, such as a scheme for AND (P1 ∧ P2). The other approach for more flexibility is to derive schemes which allow the signer to dynamically decide which predicate to use when signing a message, instead of supporting only a single, fixed predicate.

We present two main results. One is to show that one can indeed devise solutions for the static combination for AND, and for dynamically adjustable solutions for choosing the predicate on the fly. Moreover, our constructions are practical and add only a negligible overhead. The other main result is an impossibility result for static combinations. Namely, we prove that, in contrast to the case of AND, many other formulas like the logical OR (P1 ∨ P2) and the NOT (¬P) do not admit generic combinations through so-called canonical constructions. This implies that one cannot rely on general constructions in these cases, but must use other methods instead, like finding new predicate-specific solutions from scratch.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Neven, G.: Transitive signatures based on factoring and RSA. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: Definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Camacho, P., Hevia, A.: Short transitive signatures for directed trees. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 35–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Charles, D., Jain, K., Lauter, K.: Signatures for network coding. Int. J. Inf. Coding Theory 1(1), 3–14 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Desmedt, Y.: Computer security by redefining what a computer is. In: Proceedings of the 1992-1993 Workshop on New Security Paradigms, NSPW 1992-1993, pp. 1992–1993. ACM (1993)Google Scholar
  15. 15.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: Abe, M., Gligor, V. (eds.) ASIACCS 2008, pp. 353–362. ACM Press (March 2008)Google Scholar
  18. 18.
    Johnson, R., Walsh, L., Lamb, M.: Homomorphic signatures for digital photographs. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 141–157. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.: Digital documents sanitizing problem. Technical Report ISEC2003-20. IEICE (2003)Google Scholar
  22. 22.
    Nojima, R., Tamura, J., Kadobayashi, Y., Kikuchi, H.: A storage efficient redactable signature in the standard model. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 326–337. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Shahandashti, S.F., Salmasizadeh, M., Mohajeri, J.: A provably secure short transitive signature scheme from bilinear group pairs. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 60–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, L., Cao, Z., Zheng, S., Huang, X., Yang, Y.: Transitive signatures from braid groups. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 183–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Björn Deiseroth
    • 1
  • Victoria Fehr
    • 1
  • Marc Fischlin
    • 1
  • Manuel Maasz
    • 1
  • Nils Fabian Reimers
    • 1
  • Richard Stein
    • 1
  1. 1.Darmstadt University of TechnologyGermany

Personalised recommendations