Advertisement

Efficient Signatures of Knowledge and DAA in the Standard Model

  • David Bernhard
  • Georg Fuchsbauer
  • Essam Ghadafi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

Direct Anonymous Attestation (DAA) is one of the most complex cryptographic protocols deployed in practice. It allows an embedded secure processor known as a Trusted Platform Module (TPM) to attest to the configuration of its host computer without violating the owner’s privacy. DAA has been standardized by the Trusted Computing Group and ISO/IEC.

The security of the DAA standard and all existing schemes is analyzed in the random-oracle model. We provide the first constructions of DAA in the standard model, that is, without relying on random oracles. Our constructions use new building blocks, including the first efficient signatures of knowledge in the standard model, which have many applications beyond DAA.

Keywords

DAA group signatures signatures of knowledge standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)Google Scholar
  4. 4.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and DAA in the standard model. Cryptology ePrint Archive. Report 2012/475, http://eprint.iacr.org/2012/475
  6. 6.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Cryptology ePrint Archive. Report 2011/658, http://eprint.iacr.org/2011/658
  7. 7.
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X.: Short Signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In: CCS 2010, pp. 131–140. ACM (2010)Google Scholar
  10. 10.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004, pp. 132–145. ACM (2004)Google Scholar
  11. 11.
    Brickell, E., Chen, L., Li, J.: Simplified security notions for direct anonymous attestation and a concrete scheme from pairings. Int. Journal of Information Security 8, 315–330 (2009)CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: STOC 1998, pp. 209–218. ACM (1998)Google Scholar
  14. 14.
    Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203. Plenum Press (1983)Google Scholar
  16. 16.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Chen, L., Morrissey, P., Smart, N.P.: On proofs of security for DAA schemes. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 156–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols. Cryptology ePrint Archive. Report 2009/198, http://eprint.iacr.org/2009/198
  20. 20.
    Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. Journal of Computers 3, 43–50 (2008)MathSciNetGoogle Scholar
  21. 21.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Ghadafi, E.: Formalizing group blind signatures and practical constructions without random oracles. In: Cryptology ePrint Archive, Report 2011/402, http://eprint.iacr.org/2011/402.pdf
  23. 23.
    Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    International Organisation for Standardisation (ISO). ISO/IEC 11889: Information technology – Trusted Platform Module (2009)Google Scholar
  29. 29.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS 1999, pp. 120–130. IEEE Computer Society (1999)Google Scholar
  31. 31.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  32. 32.
    Trusted Computing Group. TCG TPM specification 1.2 (2003), http://www.trustedcomputinggroup.org
  33. 33.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Bernhard
    • 1
  • Georg Fuchsbauer
    • 2
  • Essam Ghadafi
    • 1
  1. 1.University of BristolUK
  2. 2.Institute of Science and TechnologyAustria

Personalised recommendations