Advertisement

Leakage Resilient IBE and IPE under the DLIN Assumption

  • Kaoru Kurosawa
  • Le Trieu Phong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

In this paper, we show identity-based encryption (IBE) and inner product encryption (IPE) schemes which achieve the maximum-possible leakage rate 1 − o(1). These schemes are secure under the decision linear (DLIN) assumption in the standard model. Specifically, even if 1 − o(1) fraction of each private key is arbitrarily leaked, the IBE scheme is fully secure and the IPE scheme is selectively secure.

Mentioned results are in the bounded memory leakage model (Akavia et al., TCC ’09). We show that they naturally extends to the continual memory leakage model (Brakerski et al., Dodis et al., FOCS ’10). In this stronger model, the leakage rate becomes 1/2 − o(1).

Keywords

IBE IPE leakage resilience DLIN assumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert [16], pp. 553–572Google Scholar
  2. 2.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. Cryptology ePrint Archive, Report 2011/410 (2011), http://eprint.iacr.org/ (accepted to Asiacrypt 2011)
  3. 3.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert [16] pp. 113–134Google Scholar
  5. 5.
    Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage resilience and the bounded retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval, Johansson [25], pp. 228–245Google Scholar
  7. 7.
    Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai [17], pp. 235–252Google Scholar
  9. 9.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: Trevisan [27], pp. 501–510, Full version available at http://eprint.iacr.org/2010/278.pdf
  13. 13.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert [16], pp. 523–552Google Scholar
  14. 14.
    Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 152–161. ACM (2010)Google Scholar
  15. 15.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: Trevisan [27], pp. 511–520Google Scholar
  16. 16.
    Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  17. 17.
    Ishai, Y. (ed.): TCC 2011. LNCS, vol. 6597. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  18. 18.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Lewko, A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, Johansson [25], pp. 318–335Google Scholar
  20. 20.
    Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert [16], pp. 62–91Google Scholar
  21. 21.
    Lewko, A.B., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai [17], pp. 70–88Google Scholar
  22. 22.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009), Full version available at http://research.microsoft.com/en-us/um/people/gilse/papers/KeyLeakage.pdf CrossRefGoogle Scholar
  23. 23.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, Johansson [25], pp. 591–608Google Scholar
  25. 25.
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237, pp. 2012–2031. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  26. 26.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  27. 27.
    Trevisan, L. (ed.): 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, Las Vegas, Nevada, USA, October 23-26, 2010. IEEE Computer Society (2010)Google Scholar
  28. 28.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, Johansson [25], pp. 117–134Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kaoru Kurosawa
    • 1
  • Le Trieu Phong
    • 2
  1. 1.Ibaraki UniversityJapan
  2. 2.NICTJapan

Personalised recommendations