Advertisement

Exposure-Resilient One-Round Tripartite Key Exchange without Random Oracles

  • Koutarou Suzuki
  • Kazuki Yoneyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

This paper studies Tripartite Key Exchange (3KE) which is a special case of Group Key Exchange. Though general one-round GKE satisfying advanced security properties such as forward secrecy and maximal-exposure-resilience (MEX-resilience) is not known, it can be efficiently constructed with the help of pairings in the 3KE case. In this paper, we introduce the first one-round 3KE which is MEX-resilient in the standard model, though existing one-round 3KE schemes are proved in the random oracle model (ROM), or not MEX-resilient. Each party broadcasts 4 group elements, and executes 14 pairing operations. Complexity is only three or four times larger in computation and communication than the existing most efficient MEX-resilient 3KE scheme in the ROM; thus, our protocol is adequately practical.

Keywords

authenticated key exchange tripartite key exchange standard model dual-receiver encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An Efficient Protocol for Authenticated Key Agreement. Des. Codes Cryptography 28(2), 119–134 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Des. Codes Cryptography 46(3), 329–342 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ustaoglu, B.: Comparing SessionStateReveal and EphemeralKeyReveal for Diffie-Hellman Protocols. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 183–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A Secure and Efficient Authenticated Diffie–Hellman Protocol. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 83–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A New Security Model for Authenticated Key Agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 219–234. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Fujioka, A., Suzuki, K.: Designing Efficient Authenticated Key Exchange Resilient to Leakage of Ephemeral Secret Keys. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 121–141. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Boyd, C., González Nieto, J.M.: Round-Optimal Contributory Conference Key Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gorantla, M.C., Boyd, C., González Nieto, J.M., Manulis, M.: Generic One Round Group Key Exchange in the Standard Model. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T. (ed.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013), http://eprint.iacr.org/2012/610 CrossRefGoogle Scholar
  13. 13.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Al-Riyami, S.S., Paterson, K.G.: Tripartite authenticated key agreement protocols from pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 332–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Manulis, M., Suzuki, K., Ustaoglu, B.: Modeling Leakage of Ephemeral Secrets in Tripartite/Group Key Exchange. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 16–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Fujioka, A., Manulis, M., Suzuki, K., Ustaoğlu, B.: Sufficient Condition for Ephemeral Key-Leakage Resilient Tripartite Key Exchange. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 15–28. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Diament, T., Lee, H.K., Keromytis, A.D., Yung, M.: The dual receiver cryptosystem and its applications. In: ACM CCS 2004, pp. 330–343 (2004)Google Scholar
  18. 18.
    Chow, S.S.M., Franklin, M., Zhang, H.: Practical Dual-Receiver Encryption: Soundness, Complete Non-Malleability, and Applications. Technical Report, UC Davis (2012), http://csiflabs.cs.ucdavis.edu/~hbzhang/dual.pdf
  19. 19.
    Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly Secure Authenticated Key Exchange from Factoring, Codes, and Lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Chevallier-Mames, B.: An Efficient CDH-Based Signature Scheme with a Tight Security Reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing 33, 167–226 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Smart, N.P.: Efficient Key Encapsulation to Multiple Parties. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Koutarou Suzuki
    • 1
  • Kazuki Yoneyama
    • 1
  1. 1.NTT Secure Platform LaboratoriesMusashino-shiJapan

Personalised recommendations