Advertisement

Fast and Maliciously Secure Two-Party Computation Using the GPU

  • Tore Kasper Frederiksen
  • Jesper Buus Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

We describe, and implement, a maliciously secure protocol for two-party computation in a parallel computational model. Our protocol is based on Yao’s garbled circuit and an efficient OT extension. The implementation is done using CUDA and yields fast results for maliciously secure two-party computation in a financially feasible and practical setting by using a consumer grade CPU and GPU. Our protocol further uses some novel constructions in order to combine garbled circuits and an OT extension in a parallel and maliciously secure setting.

Keywords

Hash Function Global Memory Random Oracle Model Oblivious Transfer Streaming Multiprocessor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: STOC 1996, pp. 479–488. ACM (1996)Google Scholar
  2. 2.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Nvidia Corporation. NVIDIA CUDA C Programming Best Practices Guide. Technical report (2012)Google Scholar
  4. 4.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM (1987)Google Scholar
  5. 5.
    Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Tasty: tool for automating secure two-party computations. In: ACM Conference on Computer and Communications Security, pp. 451–462. ACM (2010)Google Scholar
  7. 7.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)Google Scholar
  8. 8.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: From dust to dawn: Practically efficient two-party secure function evaluation protocols and their modular design. Cryptology ePrint Archive, Report 2010/079 (2010), http://eprint.iacr.org/
  11. 11.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious adversaries. In: 21th USENIX Conference on Security Symposium, p. 14. USENIX (2012)Google Scholar
  13. 13.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. In: Structure in Complexity Theory Conference, p. 90. IEEE (1990)Google Scholar
  17. 17.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139. ACM (1999)Google Scholar
  18. 18.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Nishikawa, N., Iwai, K., Kurokawa, T.: High-performance symmetric block ciphers on multicore CPU and GPUs. International Journal of Networking and Computing 2(2) (2012)Google Scholar
  21. 21.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Pu, S., Duan, P., Liu, J.-C.: Fastplay-a parallelization model and implementation of SMC on cuda based GPU cluster architecture. IACR Cryptology ePrint Archive, 2011:97 (2011)Google Scholar
  23. 23.
    Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Xu, L., Lin, D., Zou, J.: ECDLP on GPU. IACR Cryptology ePrint Archive, 2011:146 (2011)Google Scholar
  25. 25.
    Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164. IEEE (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tore Kasper Frederiksen
    • 1
  • Jesper Buus Nielsen
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations