NEON Implementation of an Attribute-Based Encryption Scheme

  • Ana Helena Sánchez
  • Francisco Rodríguez-Henríquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

In 2011, Waters presented a ciphertext-policy attribute- based encryption protocol that uses bilinear pairings to provide control access mechanisms, where the set of user’s attributes is specified by means of a linear secret sharing scheme. Some of the applications foreseen for this protocol lie in the context of mobile devices such a smartphones and tablets, which in a majority of instances are powered by an ARM processor supporting the NEON vector set of instructions. In this paper we present the design of a software cryptographic library that implements a 127-bit security level attribute-based encryption scheme over mobile devices equipped with a 1.4GHz Exynos 4 Cortex-A9 processor and a developing board that hosts a 1.7 GHz Exynos 5 Cortex-A15 processor. For the latter platform and taking advantage of the inherent parallelism of the NEON vector instructions, our library computes a single optimal pairing over a Barreto-Naehrig curve approximately 2 times faster than the best timings previously reported on ARM platforms at this level of security. Further, using a 6-attribute access formula our library is able to encrypt/decrypt a text/ciphertext in less than 7.5mS and 15.67mS, respectively.

Keywords

Atribute based-encryption pairing-based protocols Barreto-Naehrig curves elliptic curve scalar multiplication ARM processor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203–209. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Akinyele, J.A., Lehmann, C., Green, M., Pagano, M., Peterson, Z., Rubin, A.: Self-Protecting Electronic Medical Records Using Attribute-Based Encryption. In: Bhattacharya, A., Dasgupta, P., Enck, W. (eds.) The 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices SPSM 2011, pp. 75–86. ACM (2010)Google Scholar
  3. 3.
    Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chung, J., Hasan, M.A.: Asymmetric Squaring Formulas. In: Kornerup, P., Muller, J.-M. (eds.) Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pp. 113–122. IEEE Computer Society (2007)Google Scholar
  6. 6.
    Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster hashing to \({\mathbb G}_2\). In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Galbraith, S.D., Scott, M.: Exponentiation in Pairing-Friendly Groups Using Homomorphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 211–224. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings (Chapter 12). In: Joye, M., Neven, G. (eds.) Identity-based Cryptography. Cryptology and Information Security, vol. 2, pp. 188–206. IOS Press (2009)Google Scholar
  12. 12.
    Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281) (2013)Google Scholar
  13. 13.
    Koc, C.K., Acar, T., Kaliski Jr., B.S.: Analyzing and Comparing Montgomery Multiplication Algorithms. IEEE Micro 16(3), 26–33 (1996)CrossRefGoogle Scholar
  14. 14.
    Liu, Z., Cao, Z.: On efficiently transferring the linear secret-sharing scheme matrix in ciphertext-policy attribute-based encryption. IACR Cryptology ePrint Archive, 2010:374 (2010)Google Scholar
  15. 15.
    Scott, M.: On the Efficient Implementation of Pairing-Based Protocols. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Helena Sánchez
    • 1
  • Francisco Rodríguez-Henríquez
    • 1
  1. 1.Computer Science DepartmentCINVESTAV-IPNMexico

Personalised recommendations