Hardware Architectures for MSP430-Based Wireless Sensor Nodes Performing Elliptic Curve Cryptography

  • Erich Wenger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

Maximizing the battery lifetime of wireless sensor nodes and equipping them with elliptic curve cryptography is a challenge that requires new energy-saving architectures. In this paper, we present an architecture that drops a hardware accelerator between CPU and RAM. Thus neither the CPU nor the data memory need to be modified. In a detailed comparison with a software-only and a dedicated hardware architecture, we show that the drop-in concept is smaller than the dedicated hardware module, while achieving similarly fast runtimes. Most interesting for micro-chip manufacturers is that only 4 kGE of chip area need to be committed for the dedicated drop-in accelerator.

Keywords

MSP430 ASIC Hardware Software Elliptic Curve Cryptography Wireless Sensor Nodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American National Standards Institute (ANSI). AMERICAN NATIONAL STANDARD X9.62-2005. Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm, ECDSA (2005)Google Scholar
  2. 2.
    Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0 (September 2000)Google Scholar
  3. 3.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  4. 4.
    Comba, P.: Exponentiation cryptosystems on the IBM PC. IBM Systems Journal, 526–538 (1990)Google Scholar
  5. 5.
    Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Eberle, H., Wander, A., Gura, N., Chang-Shantz, S., Gupta, V.: Architectural Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors. In: IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 343–349. IEEE Computer Society (2005)Google Scholar
  7. 7.
    Fan, J., Verbauwhede, I.: An Updated Survey on Secure ECC Implementations: Attacks, Countermeasures and Cost. In: Naccache, D. (ed.) Quisquater Festschrift. LNCS, vol. 6805, pp. 265–282. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Gouvêa, C.P.L., López, J.: Software Implementation of Pairing-Based Cryptography on Sensor Networks Using the MSP430 Microcontroller. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gouvêa, C.P.L., Oliveira, L., López, J.: Efficient Software Implementation of Public-Key Cryptography on Sensor Networks Using the MSP430X Microcontroller. Journal of Cryptographic Engineering 2, 19–29 (2012)CrossRefGoogle Scholar
  10. 10.
    Großschädl, J., Savaş, E.: Instruction Set Extensions for Fast Arithmetic in Finite Fields GF(p) and GF(2m). In: CHES, pp. 133–147 (2004)Google Scholar
  11. 11.
    Guo, X., Schaumont, P.: Optimizing the HW/SW boundary of an ECC SoC design using control hierarchy and distributed storage. In: DATE, pp. 454–459 (2009)Google Scholar
  12. 12.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve Cryptography and RSA on 8-Bit CPUs. In: CHES, pp. 119–132 (2004)Google Scholar
  13. 13.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer (2004)Google Scholar
  14. 14.
    Hein, D., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Hutter, M., Joye, M., Sierra, Y.: Memory-Constrained Implementations of Elliptic Curve Cryptography in Co-Z Coordinate Representation. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    IEEE. IEEE Standard 802.15.4-2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) (May 2003)Google Scholar
  17. 17.
    Itoh, T., Tsujii, S.: Effective recursive algorithm for computing multiplicative inverses in GF(2m). Electronic Letters, 334–335 (1988)Google Scholar
  18. 18.
    Koschuch, M., Großschädl, J., Page, D., Grabher, P., Hudler, M., Krüger, M.: Hardware/Software Co-Design of Public-Key Cryptography for SSL Protocol Execution in Embedded Systems. In: Workshop on Embedded Systems Security, pp. 63–79 (2009)Google Scholar
  19. 19.
    Kumar, S.S., Paar, C.: Are standards compliant Elliptic Curve Cryptosystems feasible on RFID? In: Workshop on RFID Security – RFIDSec 2006 (2006)Google Scholar
  20. 20.
    Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic-Curve-Based Security Processor for RFID. IEEE Transactions on Computers 57(11), 1514–1527 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. In: International Conference on Information Processing in Sensor Networks, pp. 245–256 (2008)Google Scholar
  22. 22.
    López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    National Institute of Standards and Technology (NIST). FIPS-186-3: Digital Signature Standard, DSS (2009)Google Scholar
  24. 24.
    Olivier Girard. openMSP430 (2013), http://opencores.org/project,openmsp430
  25. 25.
    Öztürk, E., Sunar, B., Savaş, E.: Low-Power Elliptic Curve Cryptography Using Scaled Modular Arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Texas Instruments. MSP430C11x1 - Mixed Signal Microcontroller (2008), http://focus.ti.com
  28. 28.
    Wang, H., Sheng, B., Li, Q.: Elliptic Curve Cryptography-based Access Control in Sensor Networks. International Journal of Security and Networks, 127–137 (2006)Google Scholar
  29. 29.
    Wenger, E., Hutter, M.: Exploring the design space of prime field vs. binary field ECC-hardware implementations. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 256–271. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Wolkerstorfer, J.: Is Elliptic-Curve Cryptography Suitable for Small Devices? In: Workshop on RFID and Lightweight Crypto, pp. 78–91 (2005)Google Scholar
  31. 31.
    ZigBee Alliance. The ZigBee Alliance Website, http://www.zigbee.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erich Wenger
    • 1
  1. 1.Institute for Applied Information Processing and CommunicationsGraz University of TechnologyGrazAustria

Personalised recommendations