Sequential Aggregate Signatures Made Shorter

  • Kwangsu Lee
  • Dong Hoon Lee
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

Sequential aggregate signature (SAS) is a special type of public-key signature that allows a signer to add his signature into a previous aggregate signature in sequential order. In this case, since many public keys are used and many signatures are employed and compressed, it is important to reduce the sizes of signatures and public keys. Recently, Lee et al. proposed an efficient SAS scheme with short public keys and proved its security without random oracles under static assumptions. In this paper, we propose an improved SAS scheme that has a shorter signature size compared with that of Lee et al.’s SAS scheme. Our SAS scheme is also secure without random oracles under static assumptions. To achieve the improvement, we devise a new public-key signature scheme that supports multi-users and public re-randomization. Compared with the SAS scheme of Lee et al., our SAS scheme employs new techniques which allow us to reduce the size of signatures by increasing the size of the public keys (obviously, since signature compression is at the heart of aggregate signature this is a further step in understanding the aggregation capability of such schemes).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: ACM Conference on Computer and Communications Security, pp. 473–484 (2010)Google Scholar
  2. 2.
    Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. Cryptology ePrint Archive, Report 2007/438 (2010), http://eprint.iacr.org/2007/438
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification from trapdoor permutations. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: An approach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Research & Development (71), 1–8 (1983)Google Scholar
  13. 13.
    Lee, K., Lee, D.H., Yung, M.: Aggregating cl-signatures revisited: Extended functionality and better efficiency. Cryptology ePrint Archive, Report 2012/562 (2012), http://eprint.iacr.org/2012/562
  14. 14.
    Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. Cryptology ePrint Archive (2013), http://eprint.iacr.org/
  15. 15.
    Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public keys: Design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM Conference on Computer and Communications Security, pp. 245–254. ACM (2001)Google Scholar
  20. 20.
    Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Schröder, D.: How to aggregate the cl signature scheme. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 298–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kwangsu Lee
    • 1
  • Dong Hoon Lee
    • 1
  • Moti Yung
    • 2
    • 3
  1. 1.Korea UniversityKorea
  2. 2.Columbia UniversityUSA
  3. 3.Google Inc.USA

Personalised recommendations