Implementation, Deployment and Governance of SOA Adaptive Systems

  • R. Brzoza-Woch
  • Ł. Czekierda
  • J. Długopolski
  • P. Nawrocki
  • M. Psiuk
  • T. Szydło
  • W. Zaborowski
  • K. ZielińskiEmail author
  • D. Żmuda
Part of the Studies in Computational Intelligence book series (SCI, volume 499)


This chapter introduces a pragmatic methodology for adding and managing adaptability in multiple layers of the SOA application execution infrastructure. Adaptability mechanisms and techniques are investigated by referring to the MAPE-K pattern, which is viewed as the most representative solution for adaptive and autonomous systems. The SOA solution stack developed by IBM is selected as the basis for the application execution infrastructure model. This makes the proposed concepts easier to understand, while not detracting from their general nature. The adaptability aspect is considered in a broad context, with attempts to address, in a uniform way, all SOA applications composed of software services (Virtual Services) and hardware components (Real World Services). The proposed methology is supported by the AS3 Studio package which is a complete suite of tools providing extensions of SOA systems with adaptability features. This methodology is presented as a crucial part of the governance process of SOA applications. Finally, a case study which illustrates the proposed approach is described.


Business Process Service Oriented Architecture Composite Service Autonomous Computing Virtual Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been performed by many contributors of IT-SOA Projects. The authors wants to thanks especially to: Paweł Bachara, Marcin Jarz a̧ b, Robert Szymacha, Dominik Radziszowski, Jacek Kosiński, Kornel Skałkowski, Przemysław Wyszkowski, Sławomir Zieliński. The research presented in this paper was partially supported by the European Union in the scope of the European Regional Development Fund program no. POIG.01.03.01-00-008/08.


  1. 1.
    An architectural blueprint for autonomic computing (IBM Corp.), IBM Corp., (2006)Google Scholar
  2. 2.
    Agarwal, A., Sites, R.L., Horowitz, M.: ATUM: a new technique for capturing address traces using microcode. In: ISCA, pp. 119–127 (1986)Google Scholar
  3. 3.
    Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A service-oriented reference architecture. IT Prof. 9, 10–17 (2007)CrossRefGoogle Scholar
  4. 4.
    Avgeriou, P., Zdun, U.: Architectural patterns revisited a pattern language. In: 10th European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, pp. 1–39 (2005)Google Scholar
  5. 5.
    Baker, J., Hsieh, W.: Runtime aspect weaving through metaprogramming. In: Proceedings of the 1st International Conference on Aspect-riented Software Development, AOSD ’02, pp. 86–95. ACM, New York (2002)Google Scholar
  6. 6.
    Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and classes of web service compositions. In: Proceedings of the IEEE International Conference on Web Services, ICWS ’06, pp. 63–71. IEEE Computer Society, Washington (2006)Google Scholar
  7. 7.
    Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In: Proceedings of the Third International Conference on Service-Oriented Computing, ICSOC’05, pp. 269–282. Springer, Berlin (2005)Google Scholar
  8. 8.
    Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press, Upper Saddle River (2005)Google Scholar
  9. 9.
    Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills, Diao, Y.: Able: a toolkit for building multiagent autonomic systems. IBM Sys. J. 41(3) (2002). doi: 10.1147/sj.413.0350
  10. 10.
    Blair, G.S., Bencomo, N., France, R.B.: Models@run.time. IEEE Comput. 42(10), 22–27 (2009)Google Scholar
  11. 11.
    Bobda, C.: Introduction to Reconfigurable Computing: Architectures, Algorithms, and Applications, 1st edn. Springer Publishing Company, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Cardoso, J.M., Simoes, J.B., Correia, C.M.B.A., Combo, A., Pereira, R., Sousa, J., Cruz, N., Carvalho, P,. Varandas, C.A.F.: A high performance reconfigurable hardware platform for digital pulse processing (2004)Google Scholar
  13. 13.
    Chen, C., Li, L., Wei, J.: Aop based trustable sla compliance monitoring for web services. In: Proceedings of the Seventh International Conference on Quality Software, QSIC ’07, pp. 225–230. IEEE Computer Society, Washington (2007)Google Scholar
  14. 14.
    Chen, I.Y., Ni, G.K., Lin, C.Y.: A runtime-adaptable service bus design for telecom operations support systems. IBM Syst. J. 47(3), 445–456 (2008)CrossRefGoogle Scholar
  15. 15.
    Jayapandian, J.: Embedded control and virtual instrument simplifies laboratory automation. Curr. Sci. 90(6), 765–770 (2006)Google Scholar
  16. 16.
    Corporation, C.S.: PSoC—Technical Reference Manual (TRM) (2006)Google Scholar
  17. 17.
    Czekierda, L., Masternak, T., Zielinski, K.: Evolutionary approach to development of collaborative teleconsultation system for imaging medicine. IEEE Trans. Inf. Technol. Biomed. 16(4), 550–560 (2012). doi: 10.1109/TITB.2012.2194506 Google Scholar
  18. 18.
    Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification language. In: M. Sloman, J. Lobo, E. Lupu (eds.) POLICY Lecture Notes in Computer Science, vol. 1995, pp. 18–38. Springer, Berlin (2001)Google Scholar
  19. 19.
  20. 20.
    Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper Saddle River (2005)Google Scholar
  21. 21.
    Estrin, G.: Reconfigurable computer origins: the ucla fixed-plus-variable (f+v) structure computer. IEEE Ann. Hist. Comput. 24(4), 3–9 (2002). doi: 10.1109/MAHC.2002.1114865
  22. 22.
    Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jzquel, J.M.: Modeling and validating dynamic adaptation. In: M.R.V. Chaudron (ed.) MoDELS Workshops Lecture Notes in Computer Science, vol. 5421, pp. 97–108. Springer, Berlin (2008)Google Scholar
  23. 23.
    Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based self-adaptation with reusable infrastructure. Computer 37, 46–54 (2004)CrossRefGoogle Scholar
  24. 24.
    Goldberg, A., Havelund, K.: Instrumentation of java bytecode for runtime analysis. In: Proc. Formal Techniques for Java-like Programs. Technical Reports from ETH vol. 408(2003).Google Scholar
  25. 25.
    Gorton, I., Liu, Y., Trivedi, N.: An extensible and lightweight architecture for adaptive server applications. Softw. Pract. Exper. 38(8), 853–883 (2008)CrossRefGoogle Scholar
  26. 26.
    Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the soa-based internet of things: Discovery, query, selection, and on-demand provisioning of web services. IEEE Trans. Serv. Comput. 3(3), 223–235 (2010)CrossRefGoogle Scholar
  27. 27.
    Guinard, D., Trifa, V., Spiess, P., Dober, B., Karnouskos, S.: Discovery and on-demand provisioning of real-world web services. In: IEEE International Conference on Web Services, ICWS 2009, Los Angeles, CA (2009)Google Scholar
  28. 28.
    Hallsteinsen, S., Floch, J., Stav, E.: A middleware centric approach to building self-adapting systems. In: Proceedings of the 4th International Conference on Software Engineering and Middleware, SEM’04, pp. 107–122. Springer, Berlin (2005)Google Scholar
  29. 29.
    Heinrich, C.: RFID and beyond—growing your business through real world awareness. Wiley, Heinrich (2005)Google Scholar
  30. 30.
    Hayman, C.: The benefits of an open service oriented architecture in the enterprise, (IBM Corp.), IBM Corp., (2005)Google Scholar
  31. 31.
    Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A Pratical Guide to IBM Autonomic Computing Toolkit. IBM Corp. (2004).Google Scholar
  32. 32.
    Janiesch, C., Niemann, M., Steinmetz, R. (eds.): The TEXO Governance Framework, SAP Research Brisbane, White Paper, Version 1.1, Working Draft (2011)Google Scholar
  33. 33.
    Kaiser, G.E., Parekh, J.J., Gross, P., Valetto, G.: Kinesthetics extreme: An external infrastructure for monitoring distributed legacy systems. In: Active Middleware Services, pp. 22–31. IEEE Computer Society, USA (2003)Google Scholar
  34. 34.
    Karnouskos, S., Bangemann, T., Diedrich, C.: Integration of legacy devices in the future soa-based factory. In: 13th IFAC Symposium on Information Control Problems in Manufacturing (INCOM), Moscow, Russia (2009)Google Scholar
  35. 35.
    Karnouskos, S., Savio, D., Spiess, P., Guinard, D., Trifa, V., Baecker, O.: Real world service interaction with enterprise systems in dynamic manufacturing environments. In: L. Benyoucef, B. Grabot (eds.) Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management. Springer (2010) ISBN: 978-1-84996-118-9Google Scholar
  36. 36.
    Kean, T., Buchanan, I.: The use of fpga’s in a novel computing subsystem. In: First International ACM Workshop on Field Programmable Gate Arrays (1992)Google Scholar
  37. 37.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). doi: 10.1109/MC.2003.1160055 Google Scholar
  38. 38.
    Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In: ECOOP. Springer, Berlin (1997)Google Scholar
  39. 39.
    Klein, C., Schmid, R., Leuxner, C., Sitou, W., Spanfelner, B.: A survey of context adaptation in autonomic computing. In: Proceedings of the Fourth International Conference on Autonomic and Autonomous Systems, ICAS ’08, pp. 106–111. IEEE Computer Society, Washington (2008) doi: 10.1109/ICAS.2008.23
  40. 40.
    Kon, F., Campbell, R.H., Mickunas, M.D., Nahrstedt, K., Dennis, M., Nahrstedt, M.K., Ballesteros, F.J.: 2k: A distributed operating system for dynamic heterogeneous environments. In: 9th IEEE International Symposium on High Performance, Distributed Computing, pp. 201–210 (1999)Google Scholar
  41. 41.
    Bug Labs: Bug Labs: modular, open source hardware (2009)Google Scholar
  42. 42.
    Lee, K., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Workflow adaptation as an autonomic computing problem. In: Proceedings of the 2nd workshop on Workflows in Support of Large-Scale Science, WORKS ’07, pp. 29–34. ACM, New York (2007)Google Scholar
  43. 43.
    Lin, K.J., Panahi, M., Zhang, Y., Zhang, J., Chang, S.H.: Building accountability middleware to support dependable soa. IEEE Internet Comput. 13(2), 16–25 (2009)CrossRefzbMATHGoogle Scholar
  44. 44.
    Lodi, A., Toma, M., Campi, F., Cappelli, A., Canegallo, R., Guerrieri, R.: A vliw processor with reconfigurable instruction set for embedded applications. IEEE J. Solid-State Circuits 38(11), 1876–1886 (2003)CrossRefGoogle Scholar
  45. 45.
    McAffer, J., Lemieux, J.M.: Eclipse Rich Client Platform: Designing, Coding, and Packaging Java Applications. Addison-Wesley, Upper Saddle River (2005)Google Scholar
  46. 46. (2009)Google Scholar
  47. 47.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard) (2007)Google Scholar
  48. 48.
    Morin, B., Barais, O., Jzquel, J.M., Fleurey, F., Solberg, A.: Models@run.time to support dynamic adaptation. IEEE Comput. 42(10), 44–51 (2009)Google Scholar
  49. 49.
    Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for ws-bpel. In: Proceedings of the 17th International Conference on World Wide Web, WWW ’08, pp. 815–824. ACM, New York (2008).Google Scholar
  50. 50.
    Mudry, P.A., Vannel, F., Tempesti, G., Mange, D.: Confetti : a reconfigurable hardware platform for prototyping cellular architectures. In: IPDPS, pp. 1–8. IEEE (2007)Google Scholar
  51. 51.
    Niemann, M., Eckert, J., Repp, N., Steinmetz, R.: Towards a generic governance model for service oriented architectures. In: AMCIS’08, pp. 361–361 (2008)Google Scholar
  52. 52.
    OASIS Web Services Discovery and Web Services Devices Profile (2005)Google Scholar
  53. 53.
  54. 54.
    OSGi Alliance: OSGi Service Platform Release 4. [Online]. (2007)
  55. 55.
    Patel, S.V., Pandey, K.: Soa using aop for sensor web architecture. In: Proceedings of the 2009 International Conference on Computer Engineering and Technology—Volume 02, ICCET ’09, pp. 503–507. IEEE Computer Society, Washington (2009)Google Scholar
  56. 56.
    Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: efficient dynamic weaving for Java. In: Proceedings of the 2nd International Conference on Aspect-Oriented Software Development, AOSD ’03, pp. 100–109. ACM, New York (2003). doi: 10.1145/643603.643614
  57. 57.
    Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In: Proceedings of the 1st International Conference on Aspect-Oriented Software Development, AOSD ’02, pp. 141–147. ACM, New York (2002)Google Scholar
  58. 58.
    Prasanna, D.R.: Dependency Injection, 1st edn. Manning Publications Co., Greenwich (2009)Google Scholar
  59. 59.
    Prez, F.M., Abarca, J.A.G.M., Morillo, H.R., Gimeno, F.J.M., Jorquera, D.M., Iglesias, V.G.: Wake on lan over internet as webservice system on chip. IEEE Trans. Industr. Electron. 16(1), 45–69 (2012)Google Scholar
  60. 60.
    Psiuk, M.: AOP-based monitoring instrumentation of JBI-compliant ESB. In: Proceedings of the 2009 Congress on Services—I, SERVICES ’09, pp. 570–577. IEEE Computer Society, Washington (2009)Google Scholar
  61. 61.
    Psiuk, M., Bujok, T., Zielinski, K.: Enterprise service bus monitoring framework for soa systems. IEEE Trans. Serv. Comput. 5(3), 450–466 (2012). doi: 10.1109/TSC.2011.32.Google Scholar
  62. 62.
    Psiuk, M., Zmuda, D., Zieliski, K.: Distributed OSGI built over message-oriented middleware (2011). doi: 10.1002/spe.1148.
  63. 63.
    Rellermeyer, J.S., Duller, M., Gilmer, K., Maragkos, D., Papageorgiou, D., Alonso, G.: The software fabric for the internet of things. In: C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern, S.E. Sarma (eds.) IOT. Lecture Notes in Computer Science, vol. 4952, pp. 87–104. Springer, Berlin (2008)Google Scholar
  64. 64.
    Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson, J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P., Mun andoz, H., Tofetti, G.: Reservoir—when one cloud is not enough. Computer 44(3), 44–51 (2011). doi: 10.1109/MC.2011.64 Google Scholar
  65. 65.
    Ruta, A., Brzoza-Woch, R., Zielinski, K.: On fast development of fpga-based soa services—machine vision case study. Design Autom. Emb. Syst. 16(1), 45–69 (2012)CrossRefGoogle Scholar
  66. 66.
    Ruta, A., Li, Y., Liu, X.: Robust class similarity measure for traffic sign recognition. IEEE Trans. Intell. Transp. Syst. 846–855 (2010)Google Scholar
  67. 67.
    Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8, 10–17 (2001)Google Scholar
  68. 68.
    Shelby, Z., Bormann, C., Frank, B.: Constrained application protocol (coap). IETF Internet draft, 1–81 (2011)Google Scholar
  69. 69.
    Smith, R.B.: Spotworld and the sun spot. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN ’07, pp. 565–566. ACM, New York (2007). doi: 10.1145/1236360.1236442.
  70. 70.
    Song, H., Lee, S.H., Lee, S., Lee, H.S.: 6lowpan-based tactical wireless sensor network architecture for remote large-scale random deployment scenarios. In: Proceedings of the 28th IEEE Conference on Military Communications, MILCOM’09, pp. 1044–1050. IEEE Press, Piscataway (2009)Google Scholar
  71. 71.
    Sun, M., Li, B., Zhang, P.: Monitoring BPEL-based web service composition using AOP. In: Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and Information Science, ICIS ’09, pp. 1172–1177. IEEE Computer Society, Washington (2009)Google Scholar
  72. 72.
    Szydlo, T., Zielinski, K.: Method of adaptive quality control in service oriented architectures. In: Proceedings of the 8th International Conference on Computational Science, Part I, ICCS ’08, pp. 307–316. Springer, Berlin (2008)Google Scholar
  73. 73.
    Szydlo, T., Zielinski, K.: Adaptive enterprise service bus. New Generation Comput. 30(2–3), 189–214 (2012)CrossRefGoogle Scholar
  74. 74.
  75. 75.
    Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Yalinalp, M.: Web services policy framework (wspolicy) (2007)
  76. 76.
    Voros, N.S., Masselos, K. (eds.): System Level Design of Reconfigurable Systems-on-Chip. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)Google Scholar
  77. 77.
    Vuković, M.: Context aware service composition, PhD dissertation, Univ. of Cambridge (2007)Google Scholar
  78. 78.
    Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic systems. pp. 70–77 (2004). doi: 10.1109/ICAC.2004.1301349.
  79. 79.
    Wang, Q., Shao, J., Deng, F., Liu, Y., Li, M., Han, J., Mei, H.: An online monitoring approach for web service requirements. IEEE Trans. Serv. Comput. 2(4), 338–351 (2009)CrossRefGoogle Scholar
  80. 80.
    Wetzstein, B., Strauch, S., Leymann, F.: Measuring performance metrics of ws-bpel service compositions. In: J.L. Mauri, V.C. Giner, R. Tomas, T. Serra, O. Dini (eds.) Proceedings of the Fifth International Conference on Networking and Services, ICNS 2009, 20–25 April 2009, Valencia, Spain, pp. 49–56. IEEE Computer Society, Washington (2009)Google Scholar
  81. 81.
    Wildstrom, J., Witchel, E.J., Mooney, R.: Towards self-configuring hardware for distributed computer systems. In: Proceedings of the Second International Conference on Automatic Computing, ICAC ’05, pp. 241–249. IEEE Computer Society, Washington (2005)Google Scholar
  82. 82.
    Yeung, K., Kelly, P.H.J., Bennett, S.: Performance Analysis and Grid computing. Dynamic Instrumentation for Java Using a Virtual JVM, pp. 175–187. Kluwer Academic Publishers, Norwell (2004)Google Scholar
  83. 83.
    Yuan, H., Choi, S.W., Kim, S.D.: A practical monitoring framework for esb-based services. In: Proceedings of the 2008 IEEE Congress on Services Part II, SERVICES-2 ’08, pp. 49–56. IEEE Computer Society, Washington (2008)Google Scholar
  84. 84.
    Zeeb, E., Bobek, A., Bohn, H., Prter, S., Pohl, A., Krumm, H., Lck, I., Golatowski, F., Timmermann, D.: Ws4d: Soa-toolkits making embedded systems ready for web services, In: Proceedings of the Open Source Software and Product Lines Workshop (OSSPL07) (2007)Google Scholar
  85. 85.
    Zielinski, K., Szydlo, T., Szymacha, R., Kosinski, J., Kosinska, J., Jarzab, M.: Adaptive SOA solution stack. IEEE Trans. Serv. Comput. 5, 149–163 (2012). Google Scholar
  86. 86.
    Zmuda, D., Psiuk, M., Zielinski, K.: Dynamic monitoring framework for the SOA execution environment. Procedia CS 1(1), 125–133 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Brzoza-Woch
    • 1
  • Ł. Czekierda
    • 1
  • J. Długopolski
    • 1
  • P. Nawrocki
    • 1
  • M. Psiuk
    • 1
  • T. Szydło
    • 1
  • W. Zaborowski
    • 1
  • K. Zieliński
    • 1
    Email author
  • D. Żmuda
    • 1
  1. 1. Faculty of Computer Science, Electronics and Telecommunications, Department of Computer ScienceAGH University of Science and TechnologyKrakowPoland

Personalised recommendations