Realizability for Peano Arithmetic with Winning Conditions in HON Games

  • Valentin Blot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7941)


We build a realizability model for Peano arithmetic based on winning conditions for HON games. First we define a notion of winning strategies on arenas equipped with winning conditions. We prove that the interpretation of a classical proof of a formula is a winning strategy on the arena with winning condition corresponding to the formula. Finally we apply this to Peano arithmetic with relativized quantifications and give the example of witness extraction for \(\Pi^0_2\)-formulas.


Sugar Arena Fami 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Troelstra, A.: Chapter VI Realizability. Studies in Logic and the Foundations of Mathematics 137, 407–473 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Griffin, T.: A Formulae-as-Types Notion of Control. In: POPL, pp. 47–58. ACM Press (1990)Google Scholar
  3. 3.
    Krivine, J.L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308(1-3), 259–276 (2003)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Krivine, J.L.: Realizability in classical logic. Panoramas et Synthèses 27, 197–229 (2009)Google Scholar
  5. 5.
    Krivine, J.L.: Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log. 40(3), 189–205 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Nickau, H.: Hereditarily Sequential Functionals. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Laird, J.: Full Abstraction for Functional Languages with Control. In: LICS, pp. 58–67. IEEE (1997)Google Scholar
  9. 9.
    Abramsky, S., Honda, K., McCusker, G.: A Fully Abstract Game Semantics for General References. In: LICS, pp. 334–344. IEEE (1998)Google Scholar
  10. 10.
    Clairambault, P.: Least and Greatest Fixpoints in Game Semantics. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 16–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Abramsky, S., McCusker, G.: Call-by-Value Games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Harmer, R.: Games and full abstraction for non-deterministic languages. PhD thesis. Imperial College, London (University of London) (1999)Google Scholar
  13. 13.
    Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical Structures in Computer Science 11(2), 207–260 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Melliès, P.A.: Sequential algorithms and strongly stable functions. Theor. Comput. Sci. 343(1-2), 237–281 (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1999)Google Scholar
  16. 16.
    Coquand, T.: A Semantics of Evidence for Classical Arithmetic. J. Symb. Log. 60(1), 325–337 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hyland, J.M.E.: Game semantics. In: Pitts, A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, vol. 14. Cambridge University Press (1997)Google Scholar
  18. 18.
    Melliès, P.A., Tabareau, N.: Resource modalities in game semantics. In: LICS, pp. 389–398. IEEE (2007)Google Scholar
  19. 19.
    Berardi, S., Bezem, M., Coquand, T.: On the Computational Content of the Axiom of Choice. J. Symb. Log. 63(2), 600–622 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentin Blot
    • 1
  1. 1.Laboratoire de l’Informatique et du ParallélismeENS Lyon - Université de Lyon UMR 5668 CNRS ENS-Lyon UCBL INRIALyon cedex 07France

Personalised recommendations