Advertisement

High Resolution in STEM Mode: Individual Atom Analysis in Semiconductor Nanowires

  • María de la Mata
  • Jordi ArbiolEmail author
Chapter

Abstract

Aberration-corrected scanning transmission electron microscopy (STEM) in its different advanced modes such as high-angle annular dark field (HAADF), annular bright field (ABF), and middle-angle bright field (MABF) coupled to electron energy-loss spectroscopy (EELS) allows for high-resolution analysis of nanomaterials and can identify their properties at atomic scale, even on individual atoms. Among those properties, not only the atomic chemical composition but also their chemical state (oxidation, valence states or even coordination states) or localized physical properties, as their associated band gap, can be obtained on individual atomic columns or individual atoms. In this chapter we describe the application of aberration-corrected STEM in its different application modes and related spectroscopies (such as EELS and EDX) in order to correlate the structure and chemical composition at the atomic scale with the growth mechanisms and physical properties of semiconductor nanowires (NWs).

Keywords

Scanning Tunnel Microscopy Twin Boundary Scanning Transmission Electron Microscopy Scanning Tunnel Microscopy Image Spherical Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S et al (2009) Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B 80(24):245325CrossRefGoogle Scholar
  2. 2.
    Arbiol J, Estrade S, Prades JD, Cirera A et al (2009) Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking. Nanotechnology 20(14):145704CrossRefGoogle Scholar
  3. 3.
    Ketterer B, Heiss M, Uccelli E, Arbiol J, I Morral AF (2011) Untangling the electronic band structure of wurtzite GaAs nanowires by resonant raman spectroscopy. ACS Nano 5(9):7585–7592CrossRefGoogle Scholar
  4. 4.
    Heiss M, Conesa-Boj S, Ren J, Tseng H-H et al (2011) Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Phys Rev B 83(4):045303CrossRefGoogle Scholar
  5. 5.
    Zardo I, Conesa-Boj S, Peiro F, Morante JR et al (2009) Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects. Phys Rev B 80(24):245324CrossRefGoogle Scholar
  6. 6.
    Arbiol J, I Morral AF, Estrade S, Peiro F et al (2008) Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J Appl Phys 104(6):064312CrossRefGoogle Scholar
  7. 7.
    Lopez FJ, Hemesath ER, Lauhon LJ (2009) Ordered stacking fault arrays in silicon nanowires. Nano Lett 9(7):2774–2779CrossRefGoogle Scholar
  8. 8.
    Algra RE, Verheijen MA, Borgstrom MT, Feiner L-F et al (2008) Twinning superlattices in indium phosphide nanowires. Nature 456(7220):369–372CrossRefGoogle Scholar
  9. 9.
    Hernandez-Ramirez F, Prades JD, Tarancon A, Barth S et al (2007) Portable microsensors based on individual SnO2 nanowires. Nanotechnology 18(49):495501CrossRefGoogle Scholar
  10. 10.
    Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven laser. Nature 421:241–245CrossRefGoogle Scholar
  11. 11.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice for nanoscale photonics and electronics. Nature 415:617–620CrossRefGoogle Scholar
  12. 12.
    Huang MH, Mao S, Feick H, Yan H et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899CrossRefGoogle Scholar
  13. 13.
    Moore D, Morber JR, Snyder RL, Wang ZL (2008) Growth of ultralong ZnS/SiO2 core-shell nanowires by volume and surface diffusion VLS process. J Phys Chem C 112:2895–2903CrossRefGoogle Scholar
  14. 14.
    Moore DF, Ding Y, Wang ZL (2004) Crystal orientation-ordered ZnS nanowire bundles. J Am Chem Soc 126(14372):2895–2903Google Scholar
  15. 15.
    Chueh Y-L, Hsieh C-H, Chang M-T, Chou L-J et al (2007) RuO2 nanowires and RuO2/TiO2 core/shell nanowires: form synthesis to mechanical, optical, electrical, and photoconductive properties. Adv Mater 19(1):143–149CrossRefGoogle Scholar
  16. 16.
    Lao CS, Gao PX, Zhang L, Davidovic D et al (2006) ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266CrossRefGoogle Scholar
  17. 17.
    Zhou J, Deng SZ, Gong L, Ding Y et al (2006) Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: synthesis, growth mechanism, and device application. J Phys Chem B 110:102–196Google Scholar
  18. 18.
    Ponzoni A, Comini E, Sberveglieri G, Zhou J et al (2006) Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl Phys Lett 88:203101CrossRefGoogle Scholar
  19. 19.
    Wang X, Zhou J, Song J, Liu J et al (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6(12):2768–2772CrossRefGoogle Scholar
  20. 20.
    Zhou J, Fei P, Gao Y, Gu Y et al (2008) Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett 8(9):2725–2730CrossRefGoogle Scholar
  21. 21.
    Liu A (2008) Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron 24(2):167–177CrossRefGoogle Scholar
  22. 22.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292CrossRefGoogle Scholar
  23. 23.
    Patolsky F, Timko BP, Yu G, Fang Y et al (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104CrossRefGoogle Scholar
  24. 24.
    Liu J, Wang X, Peng Q, Li Y (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sensors and Actuators B 115:481–487CrossRefGoogle Scholar
  25. 25.
    Comini E, Faglia G, Ferroni M, Ponzoni A et al (2009) Metal oxide nanowire: preparation and application in gas sensing. J Mol Catal A: Chem 305:170–177CrossRefGoogle Scholar
  26. 26.
    Arbiol J, Cirera A, Peiro F, Cornet A et al (2002) Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy. Applied Physics Letters 80(2):329–331CrossRefGoogle Scholar
  27. 27.
    Hernandez-Ramirez F, Tarancon A, Casals O, Arbiol J et al (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sensors Actuators B 121:3–17CrossRefGoogle Scholar
  28. 28.
    Ketterer B, Arbiol J, i. Morral AF (2011) Phonon confinement and plasmon-phonon interaction in nanowire-based quantum wells. Phys Rev B 83(24):245327CrossRefGoogle Scholar
  29. 29.
    Heiss M, Ketterer B, Uccelli E, Morante JR, Arbiol J et al (2011) In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Nanotechnology 22(19):195601CrossRefGoogle Scholar
  30. 30.
    Uccelli E, Arbiol J, Morante JR, Fontcuberta A, Morral I (2010) InAs quantum dot arrays decorating the facets of GaAs nanowires. ACS Nano 4(10):5985–5993CrossRefGoogle Scholar
  31. 31.
    Heigoldt M, Arbiol J, Spirkoska D, Rebled JM et al (2009) Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. J Mater Chem 19(7):840–848CrossRefGoogle Scholar
  32. 32.
    Morral AF, Spirkoska D, Arbiol J, I Heigoldt M et al (2008) Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. Small 4(7):899–903CrossRefGoogle Scholar
  33. 33.
    Qian F, Li Y, Gradeak S, Park H-G et al (2008) Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater 7:701–706CrossRefGoogle Scholar
  34. 34.
    Zhang L, Luo JW, Zunger A, Akopian N et al (2010) Wide InP nanowires with wurtzite/zincblende superlattice segments are type-II whereas narrower nanowires become type-I: an atomistic pseudopotential calculation. Nano Lett 10(10):4055–4060CrossRefGoogle Scholar
  35. 35.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRefGoogle Scholar
  36. 36.
    Yang J-H, Chen S, Yin W-J, Gong XG (2009) Electronic structure and phase stability of MgTe, ZnTe, CdTe, and their alloys in the B3, B4, and B8 structures. Phys Rev B 79(24):245202CrossRefGoogle Scholar
  37. 37.
    Wang J, Li M, Altman EI (2004) Scanning tunneling microscopy study of self-organized Au atomic chain growth on Ge(001). Phys Rev B 70(23):233312CrossRefGoogle Scholar
  38. 38.
    Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877CrossRefGoogle Scholar
  39. 39.
    Mikkelsen A, Sköld N, Ouattara L, Borgström M et al (2004) Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nature 3:519–523CrossRefGoogle Scholar
  40. 40.
    Xu T, Dick KA, Plissard S, Nguyen TH et al (2012) Faceting, composition and crystal phase evolution in III–V antimonide nanowire heterostructures revealed by combining microscopy techniques. Nanotechnology 23(9):095702CrossRefGoogle Scholar
  41. 41.
    Kisielowski C, Freitag BB, Bischoff M, van Lin H et al (2008) Detection of single atoms and buried defects in three dimensions by aberration corrected electron microscope with 0.5Å Information limit. Microsc Microanal 14(5):467–477Google Scholar
  42. 42.
    Haider M, Uhlemann S, Schwan E, Rose H et al (1998) Electron microscopy image enhanced. Nature 392:768–769CrossRefGoogle Scholar
  43. 43.
    Rose H (1990) Outline of a spherically corrected semiaplanatic medium-voltage transmission electron-microscope. Optik 85(1):19–24Google Scholar
  44. 44.
    Letzen M, Jahnen B, Jia CL, Thust A et al (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242CrossRefGoogle Scholar
  45. 45.
    O’Keefe MA (2008) Seeing atoms with aberration-corrected sub-ångström electron microscopy. Ultramicroscopy 108:196–209CrossRefGoogle Scholar
  46. 46.
    Ohtsuka M, Yamazaki T, Kotaka Y, Hashimoto I, Watanabe K (2012) Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120:48–55CrossRefGoogle Scholar
  47. 47.
    Batson PE, Delby N, Krivanek OL (2002) Sub-ångstrom resolution using aberration corrected electron optics. Nature 418:617–620CrossRefGoogle Scholar
  48. 48.
    Nellist PD, Chisholm MF, Dellby N, Krivanek OL et al (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305(5691):1741CrossRefGoogle Scholar
  49. 49.
    Caroff P, Wagner JB, Dick KA, Henrik HA et al (2008) High quality InAs/InSb nanowire heterostructrues grown by metalorganic vapour phase epitaxy. Small 4(7):878–882CrossRefGoogle Scholar
  50. 50.
    Ouattara L, Mikkelsen A, Sköld N, Knaapen T et al (2007) GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. Nano Lett 7(9):2859–2864CrossRefGoogle Scholar
  51. 51.
    Hilner E, HåKanson U, Fröberg LE, Karlsson M et al (2008) Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett 8(11):3978–3982CrossRefGoogle Scholar
  52. 52.
    Dick KA, Bolinsson J, Borg BM, Johanson J (2012) Controlling the abrupness of axial heterojunctions in III-V nanowires: beyond the reservoir effect. Nano Lett 12(6):3200–3206CrossRefGoogle Scholar
  53. 53.
    Okunishi E, Ishikawa I, Sawada H, Hosokawa F et al (2009) Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc Microanal 15(Suppl 2):164–165CrossRefGoogle Scholar
  54. 54.
    Saxton WO, Jenkins WK, Freeman LA, Smith DJ (1978) TEM observations using bright field hollow cone illumination. Optik 49:505–510Google Scholar
  55. 55.
    Findlay SD, Shibata N, Sawada H, Okunishi E et al (2010) Dynamics of anular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110(7):903–923CrossRefGoogle Scholar
  56. 56.
    He X, Gu L, Zhu C, Yu Y et al (2011) Direct imaging of lithium ions using aberration-corrected annular-bright-field scanning transmission electron microscopy and associated contrast mechanisms. Mat Express 1(1):43–50CrossRefGoogle Scholar
  57. 57.
    Findlay SD, Azuma S, Shibata N, Okunishi E, Ikuhara Y (2011) Direct oxygen imaging within a ceramic interface, with some observations upon the dark contrast at the grain boundary. Ultramicroscopy 111:285–289CrossRefGoogle Scholar
  58. 58.
    Findlay SD, Saito T, Shibata N, Sato Y et al (2010) Direct imaging of hydrogen within a crystalline enviroment. Appl Phys Express 3:116603CrossRefGoogle Scholar
  59. 59.
    Ishikawa R, Okunishi E, Sawada H, Kondo Y et al (2011) Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10(4):278–281CrossRefGoogle Scholar
  60. 60.
    Hosokura T, Iwaji N, Nakagawa T, Ando A et al (2011) (100)-Oriented SrTiO3/BaTiO3 artificial superlattices fabricated by chemical solution deposition. Cryst Growth Des 11(10):4253–4256CrossRefGoogle Scholar
  61. 61.
    Kotaka Y (2012) Direct visualization method of the atomic structure of light and heavy atoms with double-detector Cs corrected scanning transmission electron microscopy. Appl Phys Letters 101:133107CrossRefGoogle Scholar
  62. 62.
    Stadelmann PA (1987) EMS-A software package for electron diffraction analysis and HREM image simulationin material science. Ultramicroscopy 21(2):131–146CrossRefGoogle Scholar
  63. 63.
    Amali A, Rez P (1997) Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3:28–46Google Scholar
  64. 64.
    Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field STEM images using a modified multislice method. Ultramicorscopy 23:77–96CrossRefGoogle Scholar
  65. 65.
    Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90(2–3):71–83CrossRefGoogle Scholar
  66. 66.
    Pennycook SJ, Jesson DE (1988) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37(1–4):14–38Google Scholar
  67. 67.
    Wang ZL, Cowley JM (1989) Simulating high-angle annular dark-field STEM images including inelastic thermal diffuse scattering. Ultramicroscopy 31(4):437–454CrossRefGoogle Scholar
  68. 68.
    Dinges C, Berger A, Rose H (1995) Simulation of TEM images considering phonon and electronic excitations. Ultramicroscopy 60(1):49–70CrossRefGoogle Scholar
  69. 69.
    Hartel P, Rose H, Dinges C (1996) Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2):93–114CrossRefGoogle Scholar
  70. 70.
    Nakamura K, Kakibayashi H, Kanehori K, Tanaka N (1997) Position dependence of the visibility of a single gold atom in silicon crystals in HAADF-STEM image simulation. J Electron Microsc 46(2):119–127CrossRefGoogle Scholar
  71. 71.
    Voyles PM, Grazul JL, Muller DA (2003) Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96(3–4):251–273CrossRefGoogle Scholar
  72. 72.
    Grillo V (2009) The effect of surface strain relaxation on HAADF imaging. Ultramicroscopy 109(12):1453–1464CrossRefGoogle Scholar
  73. 73.
    Grillo V, Rossi F (2011) A new insight on crystalline strain and defect features by STEM- ADF imaging. J Cryst Growth 318:1151CrossRefGoogle Scholar
  74. 74.
    Bosman M, Keast VJ, García-Muñoz JL, D’Alfonso AJ et al (2007) Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99(8):086102CrossRefGoogle Scholar
  75. 75.
    Kourkoutis LF, Xin HL, Higuchi T, Hotta Y et al (2010) Atomic-resolution spectroscopic imaging oxide interfaces. Phil Mag 90(35–36):4731–4749CrossRefGoogle Scholar
  76. 76.
    Rossell MD, Ramasse QM, Findlay SD, Rechberger F et al (2012) Direct imaging of dopant clustering in metal oxide nanoparticles. ACS Nano 6(8):7077–7083CrossRefGoogle Scholar
  77. 77.
    Suenaga K, Sato Y, Liu Z, Kataura H et al (2009) Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat Chem 1:415–418CrossRefGoogle Scholar
  78. 78.
    Muller DA, Kourkoutis LF, Murfitt M, Song JH et al (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073CrossRefGoogle Scholar
  79. 79.
    Bosman M, Watanabe M, Alexander DTL, Keast VJ (2006) Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectroscopy. Ultramicroscopy 106(11–12):1024–1032CrossRefGoogle Scholar
  80. 80.
    Tan H, Turner S, Yücelen E, Verbeeck J, Van Tendeloo G (2011) 2D Atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107:107602CrossRefGoogle Scholar
  81. 81.
    Turner S, Verbeeck J, Ramezanipour F, Greedan JE et al (2012) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24:1904–1909CrossRefGoogle Scholar
  82. 82.
    D’Afonso AJ, Freitag B, Klenov D, Allen LJ (2010) Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81:100101CrossRefGoogle Scholar
  83. 83.
    Allen LJ, D’Alfonso AJ, Freitag B, Klenov DO (2012) Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull 37:47–52CrossRefGoogle Scholar
  84. 84.
    Oh SH, van Benthem K, Molina SI, Borisevich AY et al (2008) Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett 8(4):1016–1019CrossRefGoogle Scholar
  85. 85.
    Allen JE, Hemesath ER, Perea DE, Lensch-Falk JL et al (2008) High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3:168–173CrossRefGoogle Scholar
  86. 86.
    Dick KA, Deppert K, Larlsson LS, Wallenberg LR et al (2005) A new understanding of Au-assisted growth of III-V semiconductor nanowires. Adv Funct Mater 15(10):1603–1610CrossRefGoogle Scholar
  87. 87.
    Hao Y, Meng G, Wang ZL, Ye C, Zhang L (2006) Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid–solid growth. Nano Lett 6(8):1650–1655CrossRefGoogle Scholar
  88. 88.
    Bar-Sadan M, Barthel J, Shtrikman H, Houben L (2012) Direct imaging of single Au atoms within GaAs nanowires. Nano Lett 12(5):2352–2356CrossRefGoogle Scholar
  89. 89.
    Arbiol J, Magen C, Becker P, Jacopin G et al (2012) Self-assembled GaN quantum wires on GaN/AlN nanowire templates. Nanoscale 4(23):7517–7524Google Scholar
  90. 90.
    Ramsdell LS (1947) Studies on silicon carbide. Am Mineral 32:64–82Google Scholar
  91. 91.
    Lopez FJ, Hemesath ER, Lauhon LJ (2009) Ordered stacking fault arrays in silicon nanowires. Nano Lett 9(7):2774–2779. doi:10.1021/nl901315sCrossRefGoogle Scholar
  92. 92.
    Bao J, Bell DC, Capasso F (2008) Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett 8(3):836–841CrossRefGoogle Scholar
  93. 93.
    Caroff P, Bolinsson J, Johansson J (2011) Crystal phases in III-V nanowires: from random toward engineered polytypism. IEEE J Sel Top Quantum Elecron 17(4):829–846CrossRefGoogle Scholar
  94. 94.
    Dubrovskii VG, Sibirev NV (2008) Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys Rev B 77(3):035414CrossRefGoogle Scholar
  95. 95.
    Kitauchi Y, Kobayashi Y, Tomioka K, Hara S et al (2010) Structural transition in indium phosphide nanowires. Nano Lett 10(5):1699–1703CrossRefGoogle Scholar
  96. 96.
    Algra RE, Verheijen MA, Feiner L-F, Immink GGW et al (2010) Paired twins and 11–2 morphology in GaP nanowires. Nano Lett 10(7):2349–2356CrossRefGoogle Scholar
  97. 97.
    Li Q, Wang C, Wang J, Ip K, Hark S (2004) Size-dependent periodically twinned ZnSe nanowires. Adv Mater 16(16):1436–1440CrossRefGoogle Scholar
  98. 98.
    Cohen D, McKernan S, Carter CB (1999) Characterization of the absolute crystal polarity across twin boundaries in gallium phosphide using convergent-beam electron diffraction. Microsc Microanal 5(3):173–186CrossRefGoogle Scholar
  99. 99.
    Jin L, Wang J, Jia S, Jiang Q et al (2010) ZnSe heterocrystalline junctions based on zinc blende-wurtzite polytypism. J Phys Chem C 114(3):1411–1415CrossRefGoogle Scholar
  100. 100.
    Furtmayr F, Vielemeyer M, Stutzmann M, Arbiol J et al (2008) Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy – The influence of Si- and Mg-doping. J Appl Phys 104:034309CrossRefGoogle Scholar
  101. 101.
    Baxter JB, Wu F, Aydil ES (2003) Growth mechanism and characterization of zinc oxide hexagonal columns. Appl Phys Lett 83:3797CrossRefGoogle Scholar
  102. 102.
    Kisielowski C, Hetherington CJ, Wang YC, Kilaas R et al (2001) Imaging columns of the light elements carbón, nitrogen and oxygen with sub angstrom resikution. Ultramicroscopy 89(4):243–263CrossRefGoogle Scholar
  103. 103.
    Wagner MR, Bartel TP, Kirste R, Hoffmann A (2009) Influence of substrates surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition. Phys Rev B 79:035307CrossRefGoogle Scholar
  104. 104.
    Alem N, Erni R, Kisielowski C, Rossell MD et al (2009) Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B 80:155425CrossRefGoogle Scholar
  105. 105.
    Polking MJ, Urban JJ, Milliron DJ, Zheng H et al (2011) Size-dependent polar ordering in colloidal GeTe nanocrystals. Nano Lett 11(3):1147CrossRefGoogle Scholar
  106. 106.
    Browning ND, Chisholm MF, Pennycook SJ (1993) Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366:143–146CrossRefGoogle Scholar
  107. 107.
    Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132(13):4514–4515CrossRefGoogle Scholar
  108. 108.
    Carretero-Genevrier A, Gazquez J, Idrobo JC, Arbiol J et al (2011) Single crystalline La0.7Sr0.3MnO3 Molecular sieve nanowires with high temperature ferromagnetism. J Am Chem Soc 133(11):4053–4061CrossRefGoogle Scholar
  109. 109.
    D’Alfonso AJ, Freitag B, Klenov D, Allen LJ (2010) Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81:100101CrossRefGoogle Scholar
  110. 110.
    Gonzalez E, Arbiol J, Puntes VF (2011) Carving at the nanoscale: sequential galvanic exchange and kirkendall growth at room temperature. Science 334:1377–1380CrossRefGoogle Scholar
  111. 111.
    Binning G, Roher H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61CrossRefGoogle Scholar
  112. 112.
    Karlsson LS, Dick KA, Wagner JB, Malm J-O et al (2007) Understanding the 3D structure of GaAs [111]B nanowires. Nanotechnology 18:485717CrossRefGoogle Scholar
  113. 113.
    Krishnamachari U, Borgstrom M, Ohlsson BJ, Panev N et al (2004) Defect-free InP nanowires grown in [001] direction on InP (001). Appl Phys Lett 85(11):2077–2079CrossRefGoogle Scholar
  114. 114.
    Colombo C, Spirkoska D, Frimmer M, Abstreiter G, Morral AFI (2008) Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B 77:155326CrossRefGoogle Scholar
  115. 115.
    I Morral AF, Colombo C, Abstreiter G, Arbiol J, Morante JR (2008) Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl Phys Lett 92:063112CrossRefGoogle Scholar
  116. 116.
    de la Mata M, Magen C, Gazquez J, Utama MIB et al (2012) Polarity assignment in ZnTe, GaAs, ZnO and GaN-AlN nanowires from direct dumbbell analysis. Nano Lett 12(5):2579–2586CrossRefGoogle Scholar
  117. 117.
    Utama MIB, Belarre FJ, Magen C, Peng B et al (2012) Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates. Nano Lett 12(4):2146–2152CrossRefGoogle Scholar
  118. 118.
    Schuster F, Furtmayr F, Zamani R, Magen C et al (2011) Self-assembled GaN nanowires on diamond. Nano Lett 12(5):2199–2204CrossRefGoogle Scholar
  119. 119.
    Uccelli E, Arbiol J, Magen C, Krogstrup P et al (2011) Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. Nano Lett 11(9):3827–3832CrossRefGoogle Scholar
  120. 120.
    Russo-Averchi E, Heiss M, Michelet L, Krogstrup P et al (2012) Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale 4(5):1486–1490CrossRefGoogle Scholar
  121. 121.
    Utama MIB, de la Mata M, Magen C, Arbiol J, Xiong Q (2013) Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Adv Func Mat 23(13):1636–1646Google Scholar
  122. 122.
    Soler JM, Artacho E, Gale JD, García A et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779CrossRefGoogle Scholar
  123. 123.
    Brandbyge M, Mozos JL, Ordejón P, Taylor J et al (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut de Ciència de Materials de Barcelona, ICMAB-CSICCampus de la UABBellaterraSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations