Skip to main content

TEM Characterization of Nanocomposite Materials

  • Chapter
  • First Online:
  • 4622 Accesses

Abstract

In this chapter, we describe the introduction and application of 2-dimensional (2D) and 3-dimensional (3D) characterization by transmission electron microscopy (TEM) of two types of nanocomposite materials, ceramic matrix nanocomposites (CMNC), and polymer matrix nanocomposites (PMNCs), in particular. For the case of CMNC, structural and morphological characterizations of matrix and nanostructure phases were carried out, and for the case of PMNC, dispersion and distribution of nanoparticles as well as interparticle distances between them were investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niihara K (1991) New design concept of structural ceramics. Ceramic nanocomposites. J Ceram Soc Jpn 99:974–982

    Article  CAS  Google Scholar 

  2. Pennycook SJ (1989) Z-contrast stem for materials science. Ultramicroscopy 30:58–69

    Article  Google Scholar 

  3. De Broglie L (1923) Radiations. Ondes et quanta. C R Acad Sci 177:507–510

    Google Scholar 

  4. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum, New York

    Book  Google Scholar 

  5. Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Philos Mag 21:669–688

    Article  CAS  Google Scholar 

  6. Crewe AV, Wall J, Welter LM (1968) A high-resolution scanning transmission electron microscope. J Appl Phys 39:5861–5868

    Article  Google Scholar 

  7. Howie A (1979) Image contrast and localized signal selection techniques. J Microsc 117:11–23

    Article  Google Scholar 

  8. Pennycook SJ, Jesson DE (1992) Atomic resolution Z-contrast imaging of interfaces. Acta Metallurg Mater 40:S149–S159

    Article  CAS  Google Scholar 

  9. Pennycook SJ, Nellist PD (1999) Impact of electron and scanning probe microscopy on materials research. Kluwer, The Netherlands, pp 161–207

    Book  Google Scholar 

  10. Joy DC, Romig Jr AD, Goldstein JI (1989) Principles of analytical electron microscopy. Plenum, New York

    Google Scholar 

  11. Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Article  Google Scholar 

  12. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum, New York

    Book  Google Scholar 

  13. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies. Academic, San Diego

    Book  Google Scholar 

  14. Modéer B (1974) Dislocation link length distributions studied by stereo electron microscopy. Scripta Metallurg 8:1145–1152

    Article  Google Scholar 

  15. Hare TM, Russ JC, Lane JE (1988) Volume determination of TEM specimens containing particles of precipitates. J Electron Microsc Tech 10:1–6

    Article  CAS  Google Scholar 

  16. Frank J (1996) Electron tomography: three-dimensional imaging with the transmission electron microscope. Academic, San Diego

    Google Scholar 

  17. Radon J (1917) Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Akad Wiss Leipzig Math-Phys Klasse 69:262–277

    Google Scholar 

  18. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    Article  Google Scholar 

  19. Hoppe W, Langer R, Knesch G, Poppe C (1968) Protein-kristallstrukturanalyse mit elektronenstrahlen. Naturwissenschaften 55:333–336

    Article  CAS  Google Scholar 

  20. Hart RG (1968) Electron microscopy of unstained biological material: the polytropic montage. Science 159:1464–1467

    Article  CAS  Google Scholar 

  21. Midgley PA, Dunin-Borkowski RE (2009) Electron tomography and holography in materials science. Nat Mater 8:271–280

    Article  CAS  Google Scholar 

  22. Midgley PA, Ward EPW, Hungría AB, Thomas JM (2007) Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36:1477–1494

    Article  CAS  Google Scholar 

  23. Weyland M, Midgley PA (2004) Electron tomography. Materials Today 7:32–40

    Article  CAS  Google Scholar 

  24. Midgley PA, Weyland M (2003) 3D Electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431

    Article  CAS  Google Scholar 

  25. Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7:421–425

    Article  CAS  Google Scholar 

  26. Kaneko K, Inoke K, Sato K, Kitawaki K, Higashida H, Arslan I, Midgley PA (2008) TEM characterization of Ge precipitates in an Al–1.6 at% Ge alloy. Ultramicroscopy 108:210–220

    Article  CAS  Google Scholar 

  27. Kaneko K, Furuya K, Yamada K, Sadayama S, Barnard JS, Midgley PA, Kato T, Hirayama T, Kiuchi M, Matsushita T, Ibi A, Yamada Y, Izumi T, Shiohara Y (2010) Three-dimensional analysis of BaZrO3 pinning centers gives isotropic superconductivity in GdBa2Cu3O7-δ. J Appl Phys 108:063901

    Article  CAS  Google Scholar 

  28. Kaneko K, Kitawaki K, Sadayama S, Razavi H, Hernandez-Garrido JC, Midgley PA, Okuyama H, Uda M, Sakka Y (2010) Fabrication and characterization of TiN nanocomposite powders fabricated by DC arc-plasma method. J Alloys Compd 492:685–690

    Article  CAS  Google Scholar 

  29. Tong J, Arslan I, Midgley PA (2006) A novel dual-axis iterative algorithm for electron tomography. J Struct Biol 153:55–63

    Article  Google Scholar 

  30. Baumeister W, Grimm R, Walz J (1999) Electron tomography of molecules and cells. Trends Cell Biol 9:81–85

    Article  CAS  Google Scholar 

  31. Crowther RA, de Rosier DJ, Klug A (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc Lond Ser A 317:319–340

    Article  Google Scholar 

  32. Kawase N, Kato M, Nishioka H, Jinnai H (2007) Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107:8–15

    Article  CAS  Google Scholar 

  33. Kaneko T, Nishioka H, Nishi T, Jinnai H (2005) Reduction of anisotropic image resolution in transmission electron microtomography by use of quadrangular prism-shaped section. J Electron Microsc 54:437–444

    Article  Google Scholar 

  34. Radermacher M (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9:359–394

    Article  CAS  Google Scholar 

  35. Jin-Phillipp NY, Koch CT, van Aken PA (2011) Toward quantitative core-loss EFTEM tomography. Ultramicroscopy 111:1255–1261

    Article  CAS  Google Scholar 

  36. Radermacher M (2006) Weighted back-projection methods. In: Frank J (ed) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, pp 245–273

    Chapter  Google Scholar 

  37. Marabini R, Rietzel E, Schroeder R, Herman GT, Carazo JM (1997) Three-dimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J Struct Biol 120:363–371

    Article  CAS  Google Scholar 

  38. Sorzano COS, Marabini R, Boisset N, Rietzel E, Schröder R, Herman GT, Carazo JM (2001) The effect of overabundant projection directions on 3D reconstruction algorithms. J Struct Biol 133:108–118

    Article  CAS  Google Scholar 

  39. Batenburg KJ, Bals S, Sijbers J, Kübel C, Midgley PA, Hernandez JC, Kaiser U, Encina ER, Coronado EA, Van Tendeloo G (2009) 3D Imaging of nanomaterials by discrete tomography. Ultramicroscopy 109:730–740

    Article  CAS  Google Scholar 

  40. Wong-Ng W, McMurdie HF, Partezkin B, Hubbard CR, Dragoo AL, Stewart JM (1987) Standard X-ray diffraction powder patterns of fifteen ceramic phases. Powder Diffr 2:200

    Google Scholar 

  41. Kobayashi A (2000) Formation of TiN coatings by gas tunnel type plasma reactive spraying. Surf Coat Technol 132:152–157

    Article  CAS  Google Scholar 

  42. Bacci T, Bertamini L, Ferrari F, Galliano FP, Galvanetto E (2000) Reactive plasma spraying of titanium in nitrogen containing plasma gas. Mater Sci Eng A 283:189–195

    Article  Google Scholar 

  43. Shieu FS, Cheng LH, Sung YC, Huang JH, Yu GP (1998) Microstructure and coating properties of ion-plated TiN on type 304 stainless steel. Thin Solid Films 334:125–132

    Article  CAS  Google Scholar 

  44. Didziulis SV, Lince JR, Stewart TB, Eklund EA (1994) Photoelectron spectroscopic studies of the electronic structure and bonding in TiC and TiN. Inorg Chem 33:1979–1991

    Article  CAS  Google Scholar 

  45. Dunand A, Flack H, Yvon K (1985) Bonding study of TiC and TiN. I. High-precision x-ray-diffraction determination of the valence-electron density distribution, Debye-Waller temperature factors, and atomic static displacements in TiC0.94 and TiN0.99. Phys Rev B 31:2299–2315

    Article  CAS  Google Scholar 

  46. Blaha P, Redinger J, Schwarz K (1985) Bonding study of TiC and TiN. II. Theory. Phys Rev B 31:2316–2325

    Article  CAS  Google Scholar 

  47. Tu JP, Zhu LP, Zhao HX (1999) Slurry erosion characteristics of TiN coatings on α-Ti and plasma-nitrided Ti alloy substrates. Surf Coat Technol 122:176–182

    Article  CAS  Google Scholar 

  48. Bull SJ, Sharkeev YP, Fortuna SV, Shulepov LA, Perry AJ (2001) Mechanism of improvement of TiN-coated tool life by nitrogen implantation. J Mater Res 16:3293–3303

    Article  CAS  Google Scholar 

  49. Monaghan DP, Laing KC, Logan PA, Teer DG (1993) Advanced hard and soft coatings for high performance machining and forming. Finishing 17:1–6

    Google Scholar 

  50. Wei C, Lin JF, Jiang T-H, Ai C-F (2001) Tribological characteristics of titanium nitride and titanium carbonitride multilayer films part II. The effect of coating sequence on tribological properties. Thin Solid Films 381:104–118

    Article  CAS  Google Scholar 

  51. Marin-Ayral RM, Pascal C, Martinez F, Tedenac JC (2000) Simultaneous synthesis and densification of titanium nitride by high pressure combustion synthesis. J Eur Ceram Soc 2:2679–2684

    Article  Google Scholar 

  52. Martan J, Beneš P (2012) Thermal properties of cutting tool coatings at high temperatures. Thermoch Acta 539:51–55

    Article  CAS  Google Scholar 

  53. Huang Y, Gu Y, Zheng M, Xu Z, Zeng W, Liu Y (2007) Synthesis of nanocrystalline titanium nitride by reacting titanium dioxide with sodium amide. Mater Lett 61:1056–1059

    Article  CAS  Google Scholar 

  54. Andersson KE, Wahlström MK, Roos A (1992) High stability titanium nitride based solar control films. Thin Solid Films 214:213–218

    Article  CAS  Google Scholar 

  55. Borah SM, Bailung H, Chutia J (2010) Decorative titanium nitride colored coatings on bell-metal by reactive cylindrical magnetron sputtering, progress in color. Colorants Coat 3:74–80

    Google Scholar 

  56. Mumtaz A, Class WH (1982) Color of titanium nitride prepared by reactive dc magnetron sputtering. J Vac Sci Technol 20:345–348

    Article  CAS  Google Scholar 

  57. Sundgren JE (1985) Structure and properties of TiN coatings. Thin Solid Films 128:21–44

    Article  CAS  Google Scholar 

  58. Heide N, Schultze J (1993) Corrosion stability of TiN prepared by ion implantation and PVD. Nucl Inst Methods Phys Res B 80(81):467–471

    Article  Google Scholar 

  59. Tu JP (2000) The effect of TiN coating on erosion-corrosion resistance of α-Ti alloy in saline slurry. Corros Sci 42:147–163

    Article  CAS  Google Scholar 

  60. Patsalas P, Charitidis C, Logothetidis S (2000) The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films. Surf Coat Technol 125:335–340

    Article  CAS  Google Scholar 

  61. Cheng ZY, Zhu J, Liu XH, Wang X, Yang GQ (1995) Thermal stability of Cu/TiN and Cu/Ti/TiN metallizations on silicon. J Mater Res 10:995–999

    Article  CAS  Google Scholar 

  62. Ensinger W, Rauschenbach B (1993) Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition. Nucl Instr Meth Phys Res B 80(81):1409–1414

    Article  Google Scholar 

  63. Igasaki Y, Mitsuhashi H (1980) Effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive R. F. Sputtering. Thin Solid Films 70:17–25

    Article  CAS  Google Scholar 

  64. Sinke W, Frijlink G, Saris F (1985) Oxygen in titanium nitride diffusion barriers. Appl Phys Lett 47:471–473

    Article  CAS  Google Scholar 

  65. Schiller S, Beister G, Sieber W (1984) Reactive high rate D.C. Sputtering: deposition rate, stoichiometry and features of TiOx and TiNx films with respect to the target mode. Thin Solid Films 111:259–268

    Article  CAS  Google Scholar 

  66. Poitevin JM, Lemperiere G, Tardy J (1982) Influence of substrate bias on the composition, structure and electrical properties of reactively d.c.-sputtered TiN films. Thin Solid Films 97:69–77

    Article  CAS  Google Scholar 

  67. Ahn KY, Wittmer M, Ting CY (1983) Investigation of TiN films reactively sputtered using a sputter gun. Thin Solid Films 107:45–54

    Article  CAS  Google Scholar 

  68. Kanamori S (1986) Investigation of reactively sputtered TiN films for diffusion barriers. Thin Solid Films 136:215–227

    Article  Google Scholar 

  69. Johansen O, Dontje J, Zenner R (1987) Reactive arc vapor ion deposition of TiN, ZrN and HfN. Thin Solid Films 153:75–82

    Article  CAS  Google Scholar 

  70. Chowdhury R, Vispute RD, Jagannadham K, Narayan J (1996) Characteristics of titanium nitride films grown by pulsed laser deposition. J Mater Res 11:1458–1469

    Article  CAS  Google Scholar 

  71. Wakabayashi T, Williams J, Hutchings I (1993) The action of gaseous lubricants in the orthogonal machining of an aluminium alloy by titanium nitride coated tools. Surf Coat Technol 57:183–189

    Article  CAS  Google Scholar 

  72. Jaschek R, Russel C (1991) Titanium nitride and titanium aluminum nitride coatings on silica glass, prepared by pyrolysis of a polymeric precursor film. J Non-Cryst Solids 135:236–242

    Article  CAS  Google Scholar 

  73. Lima LPB, Diniz JA, Doi I, Godoy Fo J (2012) Alternative extraction method of titanium nitride work function. Microelectron Eng 92:86–90

    Article  CAS  Google Scholar 

  74. Fillot F, Morel T, Minoret S, Matko I, Maîtrejean S, Guillaumot B, Chenevier B, Billon T (2005) Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH3. Microelectron Eng 82:248–253

    Article  CAS  Google Scholar 

  75. Yokota K, Nakamura K, Kasuya T, Ohnishi M (2003) Phase composition and crystalline structure of titanium nitride deposited on silicon by an ion-beam assisted deposition technique. J Nucl Instrum Methods Phys Res B 206:386–389

    Article  CAS  Google Scholar 

  76. Lee YJ (2005) Low-impurity, highly conformal atomic layer deposition of titanium nitride using NH3–Ar–H2 plasma treatment for capacitor electrodes. Mater Lett 59:615–617

    Article  CAS  Google Scholar 

  77. Kaskel S, Schlichte K, Kratzke T (2004) Catalytic properties of high surface area titanium nitride materials. J Mol Catal A Chem 208:291–298

    Article  CAS  Google Scholar 

  78. Qiu Y, Gao L (2005) Novel polyaniline/titanium nitride nanocomposite: controllable structures and electrical/electrochemical properties. J Phys Chem B 109:19732–19740

    Article  CAS  Google Scholar 

  79. Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125:322–330

    Article  CAS  Google Scholar 

  80. Jin X, Gao L, Li J, Zheng S (2004) Influence of microstructure evolution on the electroconducting behavior of intragranular TiN/ZTM nanocomposites. J Am Ceram Soc 87:162–165

    Article  CAS  Google Scholar 

  81. Rocha LA, Ariza E, Ferreira J, Vaz F, Ribeiro E, Rebouta L, Alves E, Ramos AR, Goudeau P, Rivière JP (2004) Structural and corrosion behaviour of stoichiometric and substoichiometric TiN thin films. Surf Coat Technol 180-181:158–163

    Article  CAS  Google Scholar 

  82. Ramanuja N, Levy RA, Dharmadhikari SN, Ramos E, Pearce CW, Menasian SC, Schamberger PC, Collins CC (2002) Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3. Mater Lett 57:261–269

    Article  CAS  Google Scholar 

  83. Gao L, Gstöttner J, Emling R, Balden M, Linsmeier C, Wiltner A, Hansch W, Schmitt-Landsiedel D (2004) Thermal stability of titanium nitride diffusion barrier films for advanced silver interconnects. Microelectron Eng 76:76–81

    Article  CAS  Google Scholar 

  84. Chen JS, Lu K-Y (2001) Thermal stability of Cu/TiN and Cu/Ti/TiN metallizations on silicon. Thin Solid Films 396:204–208

    CAS  Google Scholar 

  85. Kwak MY, Shin DH, Kang TW, Kim KN (1999) Characteristics of TiN barrier layer against Cu diffusion. Thin Solid Films 339:290–293

    Article  CAS  Google Scholar 

  86. Moriyama M, Kawazoe T, Tanaka M, Murakami M (2002) Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects. Thin Solid Films 416:136–144

    Article  CAS  Google Scholar 

  87. Wang SQ, Raaijmakers IJ, Burrow BJ, Suthar S, Redkar S, Kim KB (1990) Reactively sputtered TiN as a diffusion barrier between Cu and Si. J Appl Phys 68:5176–5187

    Article  CAS  Google Scholar 

  88. Sherman A (1990) Growth and properties of LPCVD titanium nitride as a diffusion barrier for silicon device technology. J Electrochem Soc 137:1892–1897

    Article  CAS  Google Scholar 

  89. Mårtensson P, Juppo M, Ritala M, Leskelä M, Carlsson JO (1999) Use of atomic layer epitaxy for fabrication of Si/TiN/Cu structures. J Vac Sci Technol B 17:2122–2128

    Article  Google Scholar 

  90. Smith S, Li W-M, Elers K-E, Pfeifer K (2002) Physical and electrical characterization of ALCVD™ TiN and WNxCy used as a copper diffusion barrier in dual damascene backend structures (08.2). Microelectron Eng 64:247–253

    Article  CAS  Google Scholar 

  91. Kim D-J, Jung Y-B, Lee M-B, Lee Y-H, Lee J-H, Lee J-H (2000) Applicability of ALE TiN films as Cu/Si diffusion barriers. Thin Solid Films 372:276–283

    Article  CAS  Google Scholar 

  92. Savvides N, Window B (1988) Electrical transport, optical properties, and structure of TiN films synthesized by low-energy ion assisted deposition. J Appl Phys 64:225–234

    Article  CAS  Google Scholar 

  93. Takahashi T, Itoh H (1977) Chemical vapor deposition of titanium nitride on iron in an ultrasonic field. J Electrochem Soc 124:797–802

    Article  CAS  Google Scholar 

  94. Arai T, Fujita H, Oguri K (1988) Plasma-assisted chemical vapour deposition of TiN and TiC on steel: properties of coatings. Thin Solid Films 165:139–148

    Article  CAS  Google Scholar 

  95. Tian XB, Zeng ZM, Tang BY, Fu KY, Kwok DTK, Chu PK (2000) Properties of titanium nitride fabricated on stainless steel by plasma-based ion implantation/deposition. Mater Sci Eng A282:164–169

    Article  CAS  Google Scholar 

  96. Omrani M, Habibi M, Amrollahi R (2012) Coating of titanium nitride on stainless steel targets by a 4 kJ plasma focus device. J Fusion Energ 31:401–404

    Article  CAS  Google Scholar 

  97. Kola PV, Daniels S, Cameron DC, Hashmi MSJ (1996) Magnetron sputtering of TiN protective coatings for medical applications. J Mater Process Technol 56:422–430

    Article  Google Scholar 

  98. Mezger PR, Creugers NHJ (1992) Titanium nitride coatings in clinical dentistry. J Dent 20:342–344

    Article  CAS  Google Scholar 

  99. Mändl S, Rauschenbach B (2002) Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surf Coat Technol 156:276–283

    Article  Google Scholar 

  100. Dion I, Roques X, More N, Labrousse L, Caix J, Lefebvre F, Rouais F, Gautreau J, Baquey C (1993) Ex vivo leucocyte adhesion and protein adsorption on TiN. Biomaterials 14:712–719

    Article  CAS  Google Scholar 

  101. Cyster LA, Grant DM, Parker KG, Parker TL (2002) The effect of surface chemistry and structure of titanium nitride (TiN) films on primary Hippocampal cells. Biomol Eng 19:171–175

    Article  CAS  Google Scholar 

  102. Cyster LA, Parker KG, Parker TL, Grant DM (2003) The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3 T3-L1 fibroblasts. J Biomed Mater Res A 67A:138–147

    Article  CAS  Google Scholar 

  103. Cyster LA, Parker KG, Parker TL, Grant DM (2004) The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on primary hippocampal neurons. Biomaterial 25:97–107

    Article  CAS  Google Scholar 

  104. Kirchner CN, Hallmeier KH, Szargan R, Raschke T, Radehaus C, Wittstock G (2007) Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis 19:1023–1031

    Article  CAS  Google Scholar 

  105. Wang Y, Yuan H, Lu X, Zhou Z, Xiao D (2006) All solid-state pH electrode based on titanium nitride sensitive film. Electroanalysis 18:1493–1498

    Article  CAS  Google Scholar 

  106. Musher JN, Gordon RG (1996) Atmospheric pressure chemical vapor deposition of titanium nitride from tetrakis (diethylamido) titanium and ammonia. J Electrochem Soc 143:736–744

    Article  CAS  Google Scholar 

  107. Muratore C, Hu JJ, Voevodin AA (2007) Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications. Thin Solid Films 515:3638–3643

    Article  CAS  Google Scholar 

  108. Subramanian C, Cavallaro G, Winkelman G (2000) Wear maps for titanium nitride coatings deposited on copper and brass with electroless nickel interlayers. Wear 241:228–233

    Article  CAS  Google Scholar 

  109. Gong C, Zhang J, Yan C, Cheng X, Zhang J, Yu L, Jin Z, Zhang Z (2012) Synthesis and microwave electromagnetic properties of nanosized titanium nitride. J Mater Chem 22:3370–3376

    Article  CAS  Google Scholar 

  110. Park D-G, Lim K-Y, Cho H-J, Cha T-H, Yeo I-S, Roh J-S, Park JW (2002) Impact of atomic-layer-deposited TiN on the gate oxide quality of W/TiN/SiO2/Si metal-oxide-semiconductor structures. Appl Phys Lett 80:2514–2516

    Article  CAS  Google Scholar 

  111. Kaskel S, Schlichte K, Chaplais G, Khanna M (2003) Synthesis and characterisation of titanium nitride based nanoparticles. J Mater Chem 13:1496–1499

    Article  CAS  Google Scholar 

  112. Von Seefeld H, Cheung NW, Maenpaa M, Nicolet M-A (1980) Investigation of titanium – nitride layers for solar-cell contacts. IEEE Trans Electron Devices 27:873–876

    Article  Google Scholar 

  113. Cheung NW, von Seefeld H, Nicolet M‐A, Ho F, Iles P (1981) Thermal stability of titanium nitride for shallow junction solar cell contacts. J Appl Phys 52:4297–4299

    Article  CAS  Google Scholar 

  114. Ding ZH, Yao B, Qiu LX, Bai SZ, Guo XY, Xue YF, Wang WR, Zhou XD, Su WH (2005) Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride. J Alloys Compd 391:77–81

    Article  CAS  Google Scholar 

  115. Russias J, Cardinal S, Fontaine J, Fantozzi G, Esnouf C, Bienvenu K (2005) Bulk titanium nitride material obtained from SHS starting powder: densification, mechanical characterization and tribological approach. Int J Refract Metals Hard Mater 23:344–349

    Article  CAS  Google Scholar 

  116. Kim JW, Shim J-H, Kim SC, Remhof A, Borgschulte A, Friedrichs O, Gremaud R, Pendolino F, Züttel A, Cho YW, Oh KH (2009) Catalytic effect of titanium nitride nanopowder on hydrogen desorption properties of NaAlH4 and its stability in NaAlH4. J Power Sources 192:582–587

    Article  CAS  Google Scholar 

  117. Kakati M, Bora B, Sarma S, Saikia BJ, Shripathi T, Deshpande U, Dubey A, Ghosh G, Das AK (2008) Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion. Vacuum 82:833–841

    Article  CAS  Google Scholar 

  118. Lee K-O, Cohen JJ, Brezinsky K (2000) Fluidized-bed combustion synthesis of titanium nitride. Proc Combust Inst 28:1373–1379

    Article  CAS  Google Scholar 

  119. Li W-Y, Riley FL (1991) The production of titanium nitride by the carbothermal nitridation of titanium dioxide powder. J Eur Ceram Soc 8:345–354

    Article  CAS  Google Scholar 

  120. Duan G, Zhao G, Wu L, Lin X, Han G (2011) Structure, electrical and optical properties of TiNx films by atmospheric pressure chemical vapor deposition. Appl Surf Sci 257:2428–2431

    Article  CAS  Google Scholar 

  121. Vaidhyanathan B, Rao KJ (1997) Synthesis of Ti, Ga, and V nitrides: microwave-assisted carbothermal reduction and nitridation. Chem Mater 9:1196–1200

    Article  CAS  Google Scholar 

  122. Griffiths LE, Lee MR, Mount AR, Kondoh H, Ohta T, Pulham CR (2001) Low temperature electrochemical synthesis of titanium nitride. Chem Commun 579–580

    Google Scholar 

  123. Parkin IP (2002) Solvent free reactions in the solid state: solid state metathesis. Transit Met Chem 27:569–573

    Article  CAS  Google Scholar 

  124. Gillan EG, Kaner RB (1994) Rapid solid-state synthesis of refractory nitrides. Inorg Chem 33:5693–5700

    Article  CAS  Google Scholar 

  125. Joshi UA, Chung SH, Lee JS (2005) Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J Solid State Chem 178:755–760

    Article  CAS  Google Scholar 

  126. Chen B, Evans JRG (2004) Preferential intercalation in polymer-clay nanocomposites. J Phys Chem B 108:14986–14990

    Article  CAS  Google Scholar 

  127. Guo Q, Xie Y, Wang X, Lv S, Hou T, Bai C (2005) Synthesis of uniform titanium nitride nanocrystalline powders via a reduction-hydrogenation-dehydrogenation-nitridation route. J Am Ceram Soc 88:249–251

    Article  CAS  Google Scholar 

  128. Feng X, Bai Y-J, Lu B, Wang C-G, Qi Y-X, Liu Y-X, Geng G-L, Li L (2004) Low temperature induced synthesis of TiN nanocrystals. Inorg Chem 43:3558–3560

    Article  CAS  Google Scholar 

  129. Janes RA, Aldissi M, Kaner RB (2003) Controlling surface area of titanium nitride using metathesis reactions. Chem Mater 15:4431–4435

    Article  CAS  Google Scholar 

  130. Yang X, Li C, Yang L, Yan Y, Qian Y (2003) Reduction-nitridation synthesis of titanium nitride nanocrystals. J Am Ceram Soc 86:206–208

    Article  CAS  Google Scholar 

  131. Chau JLH, Kao CC (2007) Microwave plasma synthesis of TiN and ZrN nanopowders. Mater Lett 61:1583–1587

    Article  CAS  Google Scholar 

  132. Yi HC, Moore JJ (1990) Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J Mater Chem 25:1159–1168

    CAS  Google Scholar 

  133. Van Stappen M, Malliet B, Stals L, De Schepper L, Roos JR, Celis JP (1991) Characterization of TiN coatings deposited on plasma nitrided tool steel surfaces. Mater Sci Eng A 140:554–562

    Article  Google Scholar 

  134. Sakka Y, Ohno S (1996) Hydrogen sorption-desorption characteristics of mixed and composite Ni–TiN nanoparticles. Nanostruct Mater 7:341–353

    Article  CAS  Google Scholar 

  135. Sakka Y, Okuyama H, Uchikoshi T, Ohno S (1997) Morphology and hydrogen desorption characteristic of Ni-TiN nanocomposite particle prepared by RF plasma. Nanostruct Mater 8:465–475

    Article  CAS  Google Scholar 

  136. Choi DW, Kumta PN (2005) Synthesis of nanostructured TiN using a two-step transition metal halide approach. J Am Ceram Soc 88:2030–2035

    Article  CAS  Google Scholar 

  137. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans A, Phys Metall Mater Sci 1:2943–2951

    CAS  Google Scholar 

  138. El-Eskandarany MS, Sumiyama K, Aoki K, Suzuki K (1992) Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling. J Mater Res 7:888–893

    Article  CAS  Google Scholar 

  139. Chin Z-H, Perng T-P (1997) In situ observation of combustion to form TiN during ball milling Ti in nitrogen. Appl Phys Lett 70:2380–2382

    Article  CAS  Google Scholar 

  140. El-Eskandarany MS, Omori M, Konno TJ, Sumiyama K, Hirai T, Suzuki K (1998) Syntheses of full-density nanocrystalline titanium nitride compacts by plasma-activated sintering of mechanically reacted powder. Metall Mater Trans A Phys Metall Mater Sci 29:1973–1981

    Article  Google Scholar 

  141. Ogino Y, Yamasaki T, Miki M, Atsumi N, Yoshioka K (1993) Synthesis of TiN and (Ti, Al)N powders by mechanical alloying in nitrogen gas. Scripta Metallurgica et Materiala 28:967–971

    Article  CAS  Google Scholar 

  142. Campbell SJ, Hofmann M, Calka A (2000) The synthesis of TiN by ball-milling – a neutron diffraction study. Physica B 276–278:899–900

    Article  Google Scholar 

  143. Chen Y, Li ZL, Williams JS (1995) The evolution of hydriding and nitriding reactions during ball milling of titanium in ammonia. J Mater Sci Lett 14:542–544

    Article  CAS  Google Scholar 

  144. Wexler D, Calka A, Mosbah Y (2000) Ti–TiN hardmetals prepared by in situ formation of TiN during reactive ball milling of Ti in ammonia. J Alloys Compd 309:201–207

    Article  CAS  Google Scholar 

  145. Zhang F, Kaczmarek WA, Lu L, Lai MO (2000) Formation of titanium nitrides via wet reaction ball milling. J Alloys Compd 307:249–253

    Article  CAS  Google Scholar 

  146. Sandhu GS, Meikle SG, Doan TT (1993) Metalorganic chemical vapor deposition of TiN films for advanced metallization. Appl Phys Lett 63:240–242

    Article  Google Scholar 

  147. Dixit GA, Wei CC, Liou FT, Zhang H (1993) Reactively sputtered titanium nitride films for submicron contact barrier metallization. Appl Phys Lett 62:357–359

    Article  CAS  Google Scholar 

  148. Mader W, Fischmeister HF, Bergmann E (1989) Defect structure of ion-plated titanium nitride coatings. Thin Solid Films 182:141–152

    Article  CAS  Google Scholar 

  149. Archer NJ (1981) The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1−x. Thin Solid Films 80:221–225

    Article  CAS  Google Scholar 

  150. Roth R, Schubert J, Martin M, Fromm E (1995) Effect of process parameter changes on the composition of magnetron sputtered and evaporated TiN and AlN films measured by UHV in-situ techniques. Thin Solid Films 270:320–324

    Article  CAS  Google Scholar 

  151. Kobayashi A (1996) Surface nitridation of titanium metal by means of a gas tunnel type plasma jet. J Mater Eng Perform 5:373–380

    Article  CAS  Google Scholar 

  152. Nakagawa Y, Ohtani S, Nakata T, Mikoda M, Takagi T (1993) Titanium nitride film formation by the dynamic ion beam mixing method. Nucl Instrum Meth Phys Res B 80(81):1402–1405

    Article  Google Scholar 

  153. Althues H, Palkovits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites. Chem Mater 18:1068–1072

    Article  CAS  Google Scholar 

  154. Caseri W (2009) Inorganic nanoparticles as optically effective additives for polymers. Chem Engi Commun 196:549–572

    Article  CAS  Google Scholar 

  155. Lüdersdorff FW (1833) Verh. Verein. Beförderung Gewerbefleiss. Preussen 12:224

    Google Scholar 

  156. Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Rühm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412

    Article  CAS  Google Scholar 

  157. Kang SW, Kim JH, Char K, Won J, Kang YS (2006) Nanocomposite silver polymer electrolytes as facilitated olefin transport membranes. J Membr Sci 285:102–107

    Article  CAS  Google Scholar 

  158. Karthikeyan B, Anija M, Venkatesan P, Suchand Sandeep CS, Philip R (2007) Ultrafast optical power limiting in free-standing Pt-polyvinyl alcohol nanocomposite films synthesized in situ. Opt Commun 280:482–486

    Article  CAS  Google Scholar 

  159. Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17:3499–3505

    Article  CAS  Google Scholar 

  160. Schürmann U, Hartung W, Takele H, Zaporojtchenko V, Faupel F (2005) Controlled syntheses of Ag-polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16:1078–1082

    Article  CAS  Google Scholar 

  161. Baraton M-I, Merhari L, Wang J, Gonsalves KE (1998) Investigation of the TiO2/PPV nanocomposite for gas sensing applications. Nanotechnology 9:356–359

    Article  CAS  Google Scholar 

  162. Zhang X, Shao C, Zhang Z, Li J, Zhang P, Zhang M, Mu J, Guo Z, Liang P, Liu Y (2012) In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity. ACS Appl Mater Interfaces 4:785–790

    Article  CAS  Google Scholar 

  163. Li X, Ni X, Liang Z, Shen Z (2012) Synthesis of imidazolium-functionalized ionic polyurethane and formation of CdTe quantum dot-polyurethane nanocomposites. J Polym Sci A Polym Chem 50:509–516

    Article  CAS  Google Scholar 

  164. Mcdonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    Article  CAS  Google Scholar 

  165. Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95:1439–1443

    Article  CAS  Google Scholar 

  166. Fang J, Tung LD, Stokes KL, He J, Caruntu D, Zhou WL, O’Connor CJ (2002) Synthesis and magnetic properties of CoPt-poly(methylmethacrylate) nanostructured composite material. J Appl Phys 91:8816–8818

    Article  CAS  Google Scholar 

  167. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75

    Article  CAS  Google Scholar 

  168. Prabhakaran T, Hemalatha J (2008) Synthesis and characterization of magnetoelectric polymer nanocomposites. J Polym Sci, Part B: Polym Phys 46:2418–2422

    Article  CAS  Google Scholar 

  169. Liu L, Qi Z, Zhu X (1999) Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci 71:1133–1138

    Article  CAS  Google Scholar 

  170. Smith JA, Josowicz M, Janata J (2003) Polyaniline-gold nanocomposite system. J Electrochem Soc 150:E384–E388

    Article  CAS  Google Scholar 

  171. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V (2009) Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett 128:197–202

    Article  CAS  Google Scholar 

  172. Athawale AA, Bhagwat SV (2003) Synthesis and characterization of novel copper/polyaniline nanocomposite and application as a catalyst in the Wacker oxidation reaction. J Appl Polym Sci 89:2412–2417

    Article  CAS  Google Scholar 

  173. Macanas J, Parrondo J, Munoz M, Alegret S, Mijangos F, Muraviev DN (2007) Preparation and characterisation of metal–polymer nanocomposite membranes for electrochemical applications. Phys Status Solidi (a) 204:1699–1705

    Article  CAS  Google Scholar 

  174. Harmer MA, Farneth WE, Sun Q (1996) High surface area nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715

    Article  CAS  Google Scholar 

  175. Ganesan R, Gedanken A (2008) Organic-inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems. Nanotechnology 19:435709

    Article  CAS  Google Scholar 

  176. Ahmad S, Agnihotry SA, Ahmad S (2008) Nanocomposite polymer electrolytes by in situ polymerization of methyl methacrylate: for electrochemical applications. J Appl Polym Sci 107:3042–3048

    Article  CAS  Google Scholar 

  177. Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1:4889

    Article  CAS  Google Scholar 

  178. Lin MM, Kim HH, Kim H, Muhammed M, Kim DK (2010) Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Rev 1:4883

    Article  CAS  Google Scholar 

  179. Kim JH, Park K, Kwon IC, Nam HY, Lee S, Kim K (2007) Polymers for bioimaging. Prog Polym Sci 32:1031–1053

    Article  CAS  Google Scholar 

  180. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  181. Chen L, Gu Y, Shi L, Ma J, Yang Z, Qian Y (2004) A room-temperature synthesis of titanium nitride hollow spheres. J Nanosci Nanotechnol 4:896–898

    Article  CAS  Google Scholar 

  182. Verbeek CJR (2002) Highly filled polyethylenerphlogopite composites. Mater Lett 52:453–457

    Article  CAS  Google Scholar 

  183. Rossi GB, Beaucage G, Dang TD, Vaia RA (2002) Bottom-Up synthesis of polymer nanocomposites and molecular composites: ionic exchange with PMMA latex. Nano Lett 2:319–323

    Article  CAS  Google Scholar 

  184. Mandal TK, Fleming MS, Walt DR (2002) Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2:3–7

    Article  Google Scholar 

  185. Stephen R, Ranganathaiah C, Varghese S, Joseph K, Thomas S (2006) Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:858–870

    Article  CAS  Google Scholar 

  186. Mascia L, Zhang Z, Shaw SJ (1996) Carbon fibre composites based on polyimide/silica ceramers: aspects of structure–properties relationship. Composites A 27:1211–1221

    Article  Google Scholar 

  187. Livage J, Sanchez C (1992) Sol–gel chemistry. J Non-Cryst Solids 145:11–19

    Article  CAS  Google Scholar 

  188. Smaihi M, Jermoumi T, Marignan J, Noble RD (1996) Organic–inorganic gas separation membranes: preparation and characterization. J Membr Sci 116:211–220

    Article  CAS  Google Scholar 

  189. Yuwono AH, Liu B, Xue J, Wang J, Elim HI, Ji W, Li Y, White TJ (2004) Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids. J Mater Chem 14:2978–2987

    Article  CAS  Google Scholar 

  190. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  191. Molina C, Moreira PJ, Gonçalves RR, Ferreira RAS, Messaddeq Y, Ribeiro SJL, Soppera O, Leite AP, Marques PVS, De Zea BV, Carlos LD (2005) Planar and UV written channel optical waveguides prepared with siloxane-poly(oxyethylene)-zirconia organic-inorganic hybrids. Structure and optical properties. J Mater Chem 15:3937–3945

    Article  CAS  Google Scholar 

  192. Sangermano M, Voit B, Sordo F, Eichhorn K-J, Rizza G (2008) High refractive index transparent coatings obtained via UV/thermal dual-cure process. Polymer 49:2018–2022

    Article  CAS  Google Scholar 

  193. Lee S, Shin H-J, Yoon S-M, Yi DK, Choi J-Y, Paik U (2008) Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J Mater Chem 18:1751–1755

    Article  CAS  Google Scholar 

  194. Rosidian A, Liu Y, Claus RO (1998) Ionic self-assembly of ultrahard ZrO2/polymer nanocomposite thin films. Adv Mater 10:1087–1091

    Article  CAS  Google Scholar 

  195. Zhou S, Wu L (2008) Phase separation and properties of UV-curable polyurethane/zirconia nanocomposite coatings. Macromol Chem Phys 209:1170–1181

    Article  CAS  Google Scholar 

  196. Dey A, De SK (2007) Conductivity relaxation in zirconia nanoparticles dispersed in conducting polymer. J Appl Polym Sci 105:2225–2235

    Article  CAS  Google Scholar 

  197. Zhao ZW, Tay BK, Huang L, Yu GQ (2004) Study of the structure and optical properties of nanocrystalline zirconium oxide thin films deposited at low temperatures. J Phys D: Appl Phys 37:1701–1705

    Article  CAS  Google Scholar 

  198. Ferrer FJ, Frutos F, García-López J, González-Elipe AR, Yubero F (2007) Optical refractive index and static permittivity of mixed Zr-Si oxide thin films prepared by ion beam induced CVD. Thin Solid Films 516:481–485

    Article  CAS  Google Scholar 

  199. Zhao S, Ma F, Song Z, Xu K (2008) Thickness-dependent structural and optical properties of sputter deposited ZrO2 films. Opt Mater 30:910–915

    Article  CAS  Google Scholar 

  200. Liu W-C, Wu D, Li A-D, Ling H-Q, Tang Y-F, Ming N-B (2002) Annealing and doping effects on structure and optical properties of sol-gel derived ZrO2 thin films. Appl Surf Sci 191:181–187

    Article  CAS  Google Scholar 

  201. Ehrhart G, Capoen B, Robbe O, Boy P, Turrell S, Bouazaoui M (2006) Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films 496:227–233

    Article  CAS  Google Scholar 

  202. Lü C, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  CAS  Google Scholar 

  203. Ramaswami R, Sivarajan K (2001) Optical networks: a practical perspective. Morgan Kaufmann, San Francisco

    Google Scholar 

  204. Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25:624–631

    Article  CAS  Google Scholar 

  205. Kitawaki K, Kaneko K, Inoke K, Hernandez-Garrido JC, Midgley PA, Okuyama H, Uda M, Sakka Y (2009) Fabrication and characterization of TiN-Ag nano-dice. Micron 40:308–312

    Article  CAS  Google Scholar 

  206. Owens DE, Eby JK, Jian Y, Peppas NA (2007) Temperature responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res 3:692–695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaneko, K., Sakka, Y., Ishikawa, Y. (2014). TEM Characterization of Nanocomposite Materials. In: Kumar, C. (eds) Transmission Electron Microscopy Characterization of Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38934-4_8

Download citation

Publish with us

Policies and ethics