Valence Electron Spectroscopy for Transmission Electron Microscopy

  • Masami TerauchiEmail author


Soft-X-ray emission spectroscopy (SXES) based on transmission electron microscopy can give us information of energy state of valence electrons (bonding electrons) from small specimen areas examined by microscopy, electron diffraction, and elemental analysis. The information of valence electrons cannot be directly obtained by electron energy-loss spectroscopy (EELS) widely used nowadays. In this chapter, developments of SXES instruments for conventional transmission electron microscopes (TEMs) and those results applied to materials to obtain information of valence electrons are described.


Valence Band Energy Resolution Valence Electron Lanthanide Atom Conventional Transmission Electron Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks the technical staffs of Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, for their skillful technical assistance. The author also thanks Prof. S. Yamanaka of Hiroshima University for supplying monomer-C60 and polymerized-C60 crystals; Prof. K. Kimura of University of Tokyo and Associate Prof. M. Takeda of Nagaoka University of Technology for supplying boron materials; Dr. M. Koike and Dr. T. Imazono of Quantum Beam Science Directorate, Japan Atomic Energy Agency, for designing new VLS gratings and multilayer structures; and Dr. Y. Sato of Tohoku University for calculating electronic structure of α-rhombohedral boron. Thank is also for Mr. Y. Yoneda for his efforts on experiments of lanthanum oxides.

Fundings: Those developments and applications of spectrometers were supported by Grant-in-Aid for Scientific Researches (No.12440079, No.13554010), a leading project “Development of an EELS/XES electron microscope for electronic structure analyses,” a Grant-in-Aid for Scientific Research on Priority Areas “New Materials Science Using Regulated Nano Spaces − Strategy in Ubiquitous Elements” of the Ministry of Education, Culture, Sports, Science and Technology of Japan (No.19051002), and a project of Collaborative Development of Innovative Seeds (Practicability verification stage) of Japan Science and Technology Agency.


  1. 1.
    Fabian DJ, Watson LM, Marshall CAW (1972) Soft x ray spectroscopy and the electronic structure of solids. Rep Prog Phys 34:601–696CrossRefGoogle Scholar
  2. 2.
    Attwood D (2000) Soft x-rays and extreme ultraviolet radiation. New York: Cambridge University PressGoogle Scholar
  3. 3.
    Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8(2):307–327CrossRefGoogle Scholar
  4. 4.
    Krause MO, Oliver JH (1979) Natural widths of atomic K and L levels, Kα X-Ray lines and several KLL auger lines. J Phys Chem Ref Data 8(2):329–338CrossRefGoogle Scholar
  5. 5.
    Castaing R, Guinier A (1950) Application des sondes electroniques a l’analyse metallographique. Proceedings of the 1st international conference on electron microscopy, p 60Google Scholar
  6. 6.
    Wollman DA, Irwin KD, Hilton GC (1997) High-resolution energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 188(3):196–223CrossRefGoogle Scholar
  7. 7.
    Hara T, Tanaka K, Maehata K, Mitsuda K et al (2010) Microcalorimeter-type energy dispersive X-ray spectrometer for a transition electron microscope. J Electron Microsc 59(1):17–26CrossRefGoogle Scholar
  8. 8.
    Terauchi M, Yamamoto H, Tanaka M (2001) Development of a sub-eV resolution soft-X-ray spectrometer for a transmission electron microscope. J Electron Microsc 50(2):101–104CrossRefGoogle Scholar
  9. 9.
    Terauchi M, Kawana M (2006) Soft-X-ray emission spectroscopy based on TEM –toward a total electronic structure analysis. Ultramicroscopy 106(11/12):1069–1075CrossRefGoogle Scholar
  10. 10.
    Terauchi M, Koike M, Fukushima K, Kimura A (2010) Developments of wavelength-dispersive soft-X-ray emission spectrometers for transmission electron microscopes – an introduction of valence-electron spectroscopy for transmission electron microscopy. J Electron Microsc 59(4):251–261CrossRefGoogle Scholar
  11. 11.
    Terauchi M, Takahashi H, Handa N, Murano T et al (2012) Ultrasoft-X-ray emission spectroscopy by using a newly designed WDS spectrometer attached to a transmission electron microscope. J Electron Microsc 61(1):1–8CrossRefGoogle Scholar
  12. 12.
    Terauchi M, Takahashi H, Handa N, Murano T et al (2013) A new grating X-ray spectrometer for 2–4 keV enabling a separate observation of In-Lβ and Sn-Lα emissions of indium-tin-oxide. Microsc 62(3):391–395Google Scholar
  13. 13.
    Harada T, Kita T (1980) Mechanically ruled aberration-corrected concave gratings. Appl Opt 19(23):3987–3993CrossRefGoogle Scholar
  14. 14.
    Koike M, Yamazaki T, Harada Y (1999) Design of holographic gratings recorded with aspheric wave-front recording optics for soft X-ray flat-field spectrographs. J Electron Spectrosc Relat Phenom 101–103:913–918CrossRefGoogle Scholar
  15. 15.
    Allotey FK (1967) Effect of electron–hole scattering resonance on X-ray emission spectrum. Phys Rev 157(3):467–479CrossRefGoogle Scholar
  16. 16.
    Mizuno Y, Ishikawa K (1968) Anomalies in edges of soft X-ray emission spectra of metals. J Phys Soc Jpn 25:627–628CrossRefGoogle Scholar
  17. 17.
    Arakawa ET, Williams MW (1976) Radiative decay of core excitons in alkali halides. Phys Rev Lett 36(6):333–336CrossRefGoogle Scholar
  18. 18.
    Tsang KL, Zhang CH, Callcott TA, Arakawa ET et al (1987) Fluorescent emission spectra of lithium fluoride with use of synchrotron radiation. Phys Rev B 35(16):8374–8377CrossRefGoogle Scholar
  19. 19.
    Inoue ST, Yamashita J (1973) Electronic structure of metallic beryllium. J Phys Soc Jpn 35(3):677–683CrossRefGoogle Scholar
  20. 20.
    Neddermeyer H (1976) X-ray emission and absorption edges of magnesium and aluminum. Phys Rev B 13(6):2411–2417CrossRefGoogle Scholar
  21. 21.
    Nozieres P, De Dominicis CT (1969) Singularities in the X-ray absorption and emission of metals III. One-body theory exact solution. Phys Rev 178(3):1097–1107CrossRefGoogle Scholar
  22. 22.
    Belin-Ferre E, Dubois JM (2008) Experimental evidence of the formation d-like states near the Fermi energy in complex metallic alloys. Philos Mag 88(13–15):2163–2170CrossRefGoogle Scholar
  23. 23.
    Livins P, Schnatterly SE (1988) Shakeup in soft-x-ray emission. I. The low-energy tail. Phys Rev B 37(12):6731–6741CrossRefGoogle Scholar
  24. 24.
    Courths R, Hufner S, Schulz H (1978) High-resolution normal emission UV-photoelectron spectra and band structure of Cu. Z Phys B 35:107–117CrossRefGoogle Scholar
  25. 25.
    Schoser S, Brauchle G, Forgt J, Kohlhof K et al (1998) XPS investigation of AlN formation in aluminum alloys using plasma source ion plantation. Surf Coat Technol 103–104:222–226CrossRefGoogle Scholar
  26. 26.
    Li J, Nam KB, Nakarmi ML, Lin JY et al (2003) Band structure and fundamental optical transitions in wurtzite AlN. Appl Phys Lett 83(25):5163–5165CrossRefGoogle Scholar
  27. 27.
    Mattogno G, Righini G, Montesperelli G, Traversa E (1994) X-ray photoelectron spectroscopy investigation of MgAl2O4 thin films for humidity sensors. J Mater Res 9(6):1426–1433CrossRefGoogle Scholar
  28. 28.
    Bortz ML, French RH, Jones DJ, Kasowski RV et al (1990) Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys Scripta 41:537–541CrossRefGoogle Scholar
  29. 29.
    Kotani A, Shin S (2001) Resonant inelastic x-ray scattering spectra for electrons in solids. Rev Mod Phys 73(1):203–246CrossRefGoogle Scholar
  30. 30.
    Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92. At Data Nucl Data Tables 54(2):181–342CrossRefGoogle Scholar
  31. 31.
    Shin S, Agui A, Watanabe M, Fujisawa M et al (1996) Observation of resonant Raman scattering at the Si L2,3 core exciton. Phys Rev B 53(23):15660–15666CrossRefGoogle Scholar
  32. 32.
    Boo LH, Lee SB, Yu KS, Sung MM et al (2000) High vacuum chemical vapor deposition of cubic SiC thin films on Si(001) substrates using single source precursor. Surf Coat Technol 131:147–152CrossRefGoogle Scholar
  33. 33.
    Barr TL (1983) An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Appl Surf Sci 15:1–35CrossRefGoogle Scholar
  34. 34.
    Nithianandam VJ, Schnatterly SE (1988) Soft-x-ray emission and inelastic electron-scattering study of the excitations in amorphous and crystalline silicon dioxide. Phys Rev B 38(8):5547–5553CrossRefGoogle Scholar
  35. 35.
    Okada K, Kameshima Y, Yasumori A (1998) Chemical shifts of silicon X-ray photoelectron spectra by polymerization structure of silicates. J Am Ceram Soc 81(7):1970–1972CrossRefGoogle Scholar
  36. 36.
    Weijs PJW, van Leuken H, de Groot RA, Fuggle JC (1991) X-ray-emission studies of chemical bonding in transition-metal silicides. Phys Rev B 44(15):8195–8203CrossRefGoogle Scholar
  37. 37.
    Yamauchi Y, Yoshitake M, SERD project group of SASJ (2002) Chemical shift at interface for silicides. J Surf Anal 9(3):432435CrossRefGoogle Scholar
  38. 38.
    Golicova OA (1987) Semiconductors with complex lattice and the amorphization problem. Phys Stat Sol 101:277–314CrossRefGoogle Scholar
  39. 39.
    Katada K (1966) An electron diffraction study of evaporated boron films. Jpn J Appl Phys 5(7):582–587CrossRefGoogle Scholar
  40. 40.
    Horn FH (1959) Some electrical and optical properties of simple rhombohedral boron. J Appl Phys 30(10):1611–1612CrossRefGoogle Scholar
  41. 41.
    Gunji S, (1996) Kamimura H First-principles study on metal-doped icosahedral B12 solids. Phys Rev B 54(19):13665–13673CrossRefGoogle Scholar
  42. 42.
    Nagatochi T, Hyodo H, Sumiyoshi A, Soga K et al (2011) Superconductivity in Li-doped α-rhombohedral boron. Phys Rev B 83:184507–1-184507–5Google Scholar
  43. 43.
    Fujimori M, Nakata T, Nakayama T, Nishibori E et al (1999) Peculiar covalent bonds in α-rhombohedral boron. Phys Rev Lett 82(22):4452–4455CrossRefGoogle Scholar
  44. 44.
    Terauchi M, Satoh Y, Kimura K (2009) Soft-X-ray emission spectroscopy study of the valence electron states of α-rhombohedral boron. J Phys Conf Series 176:012025-1-6CrossRefGoogle Scholar
  45. 45.
    Bylander DM, Kleinman L, Lee S (1990) Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys Rev B 42(2):1394–1403CrossRefGoogle Scholar
  46. 46.
    Takeda M, Terui M, Takahashi N, Ueda N (2006) Improvement of thermoelectric properties of alkaline-earth hexaborides. J Solid State Chem 179:2823–2826CrossRefGoogle Scholar
  47. 47.
    Muetterties EL (ed) (1967) The chemistry of boron and its compounds. New York: WileyGoogle Scholar
  48. 48.
    Schmitt K, Stuckl C, Ripplinger H, Albert B (2001) Crystal and electronic structure of BaB6 in comparison with CaB6 and molecular [B6H6]2-. Solid State Sci 3:321–327CrossRefGoogle Scholar
  49. 49.
    Hasegawa A, Yanase A (1977) Energy bandstructure and Fermi surface of LaB6 by a self-consistent APW method. J Phys F Metal Phys 7(7):1245–1260CrossRefGoogle Scholar
  50. 50.
    Yamanaka S, Kubo A, Inumaru K, Komaguchi K (2006) Electron conductive three-dimensional polymer of cuboidal C60. Phys Rev Lett 96:076602-1-4CrossRefGoogle Scholar
  51. 51.
    Yamanaka S, Kini NS, Kubo A, Jida S et al (2008) Topochemical 3D polymerization of C60 under high pressure at elevated temperatures. J Am Chem Soc 130(13):4303–4309CrossRefGoogle Scholar
  52. 52.
    Jackson ST, Nuzzo RG (1995) Determining hybridization differences for amorphous carbon from the XPS C 1 s envelope. Appl Surf Sci 90(2):195–203CrossRefGoogle Scholar
  53. 53.
    Saito S, Oshiyama A (1991) Cohesive mechanism and energy bands of solid C60. Phys Rev Lett 66(20):2637–2640CrossRefGoogle Scholar
  54. 54.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. doi:10.1107/S0021889811038970CrossRefGoogle Scholar
  55. 55.
    Terauchi M, Nishimura S, Iwasa Y (2005) High energy-resolution electron energy-loss spectroscopy study of the electronic structure of C60 polymer crystals. J Electron Spectrosc Relat Phenom 143(2–3):169–174Google Scholar
  56. 56.
    Muramatsu Y, Hirono S, Umemura S, Ueno Y et al (2001) Soft X-ray emission and absorption spectra in the C K region of sputtered amorphous carbon films. Carbon 39:1403–1407CrossRefGoogle Scholar
  57. 57.
    Merkel M, Knupfer M, Golden MS, Fink J et al (1993) Photoemission study of the electronic structure of C60 and KxC60. Phys Rev B 47(17):11470–11478CrossRefGoogle Scholar
  58. 58.
    Guo JH, Glans P, Skytt P, Wassdahl N et al (1995) Resonant excitation x-ray fluorescence from C60. Phys Rev B 52(15):10681–10684CrossRefGoogle Scholar
  59. 59.
    Matthew JAD, Nuttall JD, Gallon TE (1976) Enhancement of coster-kronig rates in solid-state environments. J Phys C Sollid State Phys 9:883–888CrossRefGoogle Scholar
  60. 60.
    Grush MM, Horne CR, Perera RCC, Ederer DL et al (2000) Correlating electronic structure with cycling performance of substituted LiMn2O4 electrode materials: a study using the techniques of soft X-ray absorption and emission. Chem Mater 12(3):659–664CrossRefGoogle Scholar
  61. 61.
    van Elp J, Wieland JL, Eskes H, Kuiper P (1991) Electronic structure of CoO, Li-doped CoO, and LiCoO2. Phys Rev B 44(12):6090–6103CrossRefGoogle Scholar
  62. 62.
    Kurmaev EZ, Wilks RG, Moewes A, Finkelstein LD (2008) Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides. Phys Rev B 77:1651271-1-5CrossRefGoogle Scholar
  63. 63.
    Manoubi T, Colliex C, Rez P (1990) Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides. J Electron Spectrosc Rel Phenom 50(1):1–18CrossRefGoogle Scholar
  64. 64.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. New York: PlenumCrossRefGoogle Scholar
  65. 65.
    Fischer DW, Baun WL (1967) Self-absorption effects in the soft X-ray Mα and Mβ emission spectra of the rare earth elements. J Appl Phys 38(12):4830–4836CrossRefGoogle Scholar
  66. 66.
    Heitler W (1954) The quantum theory of radiation. New York: Oxford University PressGoogle Scholar
  67. 67.
    Kieser J (1977) On the electronic structure of graphite. Z Phys B 26:1–10CrossRefGoogle Scholar
  68. 68.
    Tegeler E, Kosuch N, Wiech G, Faessler A (1977) Anisotropic emission of the X-Ray K-emission band of nitrogen in hexagonal boron nitride. Phys Stat Sol 84:561–567CrossRefGoogle Scholar
  69. 69.
    McFeely FR, Kowalczyk SP, Ley L, Gavell RG et al (1974) X-ray photoemission studies of diamond, graphite, and glassy carbon balance bands. Phys Rev B 9(12):5268–5278CrossRefGoogle Scholar
  70. 70.
    Xu YN, Ching WY (1991) Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys Rev B 44(15):7787–7798CrossRefGoogle Scholar
  71. 71.
    Sato Y, Terauchi M, Mukai M, Kaneyama T et al (2011) High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111:1381–1387CrossRefGoogle Scholar
  72. 72.
    Terauchi M, Tanaka M, Tsuno K, Ishida M (1999) Development of a high energy resolution electron energy-loss spectroscopy microscope. J Microscopy 194(1):203–209CrossRefGoogle Scholar
  73. 73.
    Terauchi M, Uemichi Y, Ueda H, Tsai AP et al (2007) TEM spectroscopy study of electronic structure of quasicrystals and approximants. Philos Mag 87(18–21):2947–2955CrossRefGoogle Scholar
  74. 74.
    Terauchi M (2006) Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Microsc Res Tech 69:531–537CrossRefGoogle Scholar
  75. 75.
    Spiller E (2000) Reflection optics: multilayers. In: Samson JA, Ederer DL (eds) Vacuum ultraviolet spectroscopy. Academic, San DiegoGoogle Scholar
  76. 76.
    Imazono T, Koike M, Koeda M, Nagano T et al (2012) A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2–4 keV. AIP Conf Proc 1465:33–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityAoba-kuJapan

Personalised recommendations