Advertisement

TEM for Characterization of Core-Shell Nanomaterials

  • Yiqian WangEmail author
  • Chao Wang
Chapter

Abstract

Transmission electron microscope is an essential tool for characterization of nanoscale materials and devices because it can shed light on the microstructure of nanomaterials. For core-shell nanostructured materials, transmission electron microscopy (TEM) can provide much more important information: overall particle size, core size, shell thickness, uniform or nonuniform shell coating, lattice fringe, elemental distribution, etc. In this chapter we will describe the application of TEM for characterization of core-shell nanomaterials.

Keywords

HRTEM Image Scanning Transmission Electron Microscopy Select Area Electron Diffraction Pattern Transmission Electron Microscopy Bright Field Image Transmission Electron Microscopy Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank the financial support from the National Natural Science Foundation of China (Grant Nos. 10974105), the National Basic Research Program of China (Grant No. 2012CB722705), the Natural Science Foundation for Outstanding Young Scientists in Shandong Province (Grant No. JQ201002), the Project of Introducing Talents to Support Thousand Talents Programs (Grant No. P201101032), the Program of Science and Technology in Qingdao City (Grant No. 11-2-4-23-hz), and the Scientific Research Starting Foundation for the Introduced Talents at Qingdao University (Grant No. 06300701). Y. Q. Wang would also like to thank the financial support from the Taishan Outstanding Overseas Scholar Program in Shandong Province.

References

  1. 1.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRefGoogle Scholar
  2. 2.
    Spanhel L, Weller H, Henglein A (1987) Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J Am Chem Soc 109(22):6632–6635CrossRefGoogle Scholar
  3. 3.
    Youn HC, Baral S, Fendler JH (1988) Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J Phys Chem 92(22):6320–6327CrossRefGoogle Scholar
  4. 4.
    Hoener CF, Allan KA, Bard AJ, Campion A et al (1992) Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J Phys Chem 96(9):3812–3817CrossRefGoogle Scholar
  5. 5.
    Honma I, Sano T, Komiyama H (1993) Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles. J Phys Chem 97(25):6692–6695CrossRefGoogle Scholar
  6. 6.
    Zhou HS, Sasahara H, Honma I, Komiyama H et al (1994) Coated semiconductor nanoparticles: the CdS/PbS system’s photoluminescence properties. Chem Mater 6(9):1534–1541CrossRefGoogle Scholar
  7. 7.
    Ahmed J, Sharma S, Ramanujachary KV, Lofland SE et al (2009) Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles. J Colloid Interface Sci 336(2):814–819CrossRefGoogle Scholar
  8. 8.
    El-Safty SA (2008) Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths. J Colloid Interface Sci 319(2):477–488CrossRefGoogle Scholar
  9. 9.
    Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168CrossRefGoogle Scholar
  10. 10.
    Salazar-Alvarez G, Qin J, Sépelák V, Bergmann I et al (2008) Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J Am Chem Soc 130(40):13234–13239CrossRefGoogle Scholar
  11. 11.
    Schmidt E, Vargas A, Mallat T, Baiker A (2009) Shape-selective enantioselective hydrogenation on Pt nanoparticles. J Am Chem Soc 131(34):12358–12367CrossRefGoogle Scholar
  12. 12.
    Wang ZL, Ahmad TS, El-Sayed MA (1997) Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf Sci 380(2–3):302–310CrossRefGoogle Scholar
  13. 13.
    Wei XW, Zhu GX, Liu YJ, Ni YH et al (2008) Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem Mater 20(19):6248–6253CrossRefGoogle Scholar
  14. 14.
    Yamade M, Kon S, Miyake M (2005) Synthesis and size control of Pt nanocubes with high selectivity using the additive effect of NaI. Chem Lett 34(7):1050–1051CrossRefGoogle Scholar
  15. 15.
    Hu JS, Guo YG, Liang HP, Wan LJ et al (2005) Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc 127(48):17090–17095CrossRefGoogle Scholar
  16. 16.
    Jitianu M, Goia DV (2007) Zinc oxide colloids with controlled size, shape, and structure. J Colloid Interface Sci 309(1):78–85CrossRefGoogle Scholar
  17. 17.
    Ren TZ, Yuan ZY, Hu WK, Zou XD (2008) Single crystal manganese oxide hexagonal plates with regulated mesoporous structures. Micropor Mesopor Mater 112(1–3):467–473CrossRefGoogle Scholar
  18. 18.
    Ren XL, Han D, Chen D, Tang FQ (2007) Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation. Mater Res Bull 42(5):807–813CrossRefGoogle Scholar
  19. 19.
    Suematsu NJ, Ogawa Y, Yamamoto Y, Yamaguchi T (2007) Dewetting self-assembly of nanoparticles into hexagonal array of nanorings. J Colloid Interface Sci 310(2):648–652CrossRefGoogle Scholar
  20. 20.
    Wu L, Yu JC, Zhang LZ, Wang XC et al (2004) Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J Solid State Chem 177(10):3666–3674CrossRefGoogle Scholar
  21. 21.
    Qu XZ, Omar L, Le TBH, Tetley L et al (2008) Polymeric amphiphile branching leads to rare nanodisc shaped planar self-assemblies. Langmuir 24(18):9997–10004CrossRefGoogle Scholar
  22. 22.
    Cao GZ, Liu DW (2008) Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv Colloids Interface Sci 136(1–2):45–64CrossRefGoogle Scholar
  23. 23.
    Kline TR, Tian ML, Wang JG, Sen A et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565CrossRefGoogle Scholar
  24. 24.
    Li MW, Mayer TS, Sioss JA, Keating CD et al (2007) Template-grown metal nanowires as resonators: performance and characterization of dissipative and elastic properties. Nano Lett 7(11):3218–3284CrossRefGoogle Scholar
  25. 25.
    Liu Z, Elbert D, Chien CL, Searson PC (2008) FIB/TEM characterization of the composition and structure of core/shell Cu-Ni nanowires. Nano Lett 8(8):2166–2170CrossRefGoogle Scholar
  26. 26.
    Peña DJ, Mbindyo JKN, Carado AJ, Mallouk TE et al (2002) Template growth of photoconductive metal-CdSe-metal nanowires. J Phys Chem B 106(30):7458–7462CrossRefGoogle Scholar
  27. 27.
    Routkevitch D, Bigioni T, Moskovits M, Xu JM (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100(33):14037–14047CrossRefGoogle Scholar
  28. 28.
    Sioss JA, Keating CD (2005) Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett 5(9):1779–1783CrossRefGoogle Scholar
  29. 29.
    Wu YY, Livneh T, Zhang YX, Cheng GS et al (2004) Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett 4(12):2337–2342CrossRefGoogle Scholar
  30. 30.
    Bok HM, Kim S, Yoo SH, Kim SK et al (2008) Synthesis of perpendicular nanorod arrays with hierarchical architecture and water slipping superhydrophobic properties. Langmuir 24(8):4168–4173CrossRefGoogle Scholar
  31. 31.
    Bok HM, Shuford KL, Kim S, Kim SK et al (2008) Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods. Nano Lett 8(8):2265–2270CrossRefGoogle Scholar
  32. 32.
    Nicewarner-Peña SR, Freeman RG, Reiss BD, He L et al (2001) Submicrometer metallic barcodes. Science 294(5540):137–141CrossRefGoogle Scholar
  33. 33.
    Park S, Chung SW, Mirkin CA (2004) Hybrid organic-inorganic, rod-shaped nanoresistors and diodes. J Am Chem Soc 126(38):11772–11773CrossRefGoogle Scholar
  34. 34.
    Park S, Lim JH, Chung SW, Mirkim CA (2004) Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303(5656):348–351CrossRefGoogle Scholar
  35. 35.
    Paxton WF, Kistler KC, Olmeda CC, Sen A et al (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424–13431CrossRefGoogle Scholar
  36. 36.
    Peng XG, Manna L, Yang WD, Wickham J et al (2000) Shape control of CdSe nanocrystals. Nature 404(6673):59–61Google Scholar
  37. 37.
    Yoo SH, Park S (2007) Platinum-coated, nanoporous gold nanorod arrays: synthesis and characterization. Adv Mater 19(12):1612–1615CrossRefGoogle Scholar
  38. 38.
    Michailowski A, Almawlawi D, Cheng GS, Moskovits M (2001) Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett 349(1–2):1–5CrossRefGoogle Scholar
  39. 39.
    Shelimov KB, Moskovits M (2000) Composite nanostructures based on template-grown boron nitride nanotubules. Chem Mater 12(1):250–254CrossRefGoogle Scholar
  40. 40.
    Shin TY, Yoo SH, Park S (2008) Gold nanotubes with a nanoporous wall: their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation. Chem Mater 20(17):5682–5686CrossRefGoogle Scholar
  41. 41.
    Xiao R, Cho SI, Liu R, Lee SB (2007) Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc 129(14):4483–4489CrossRefGoogle Scholar
  42. 42.
    Ge JP, Zhang Q, Zhang TR, Yin YD (2008) Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chem Int Ed 120(47):8924–8928CrossRefGoogle Scholar
  43. 43.
    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S et al (2007) Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. Nano Lett 7(6):1701–1705CrossRefGoogle Scholar
  44. 44.
    Qian F, Gradečak S, Li Y, Wen CY et al (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5(11):2287–2291CrossRefGoogle Scholar
  45. 45.
    Liu J, Xia H, Xue DF, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087CrossRefGoogle Scholar
  46. 46.
    Lou XW, Yuan C, Archer LA (2007) Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv Mater 19(20):3328–3332CrossRefGoogle Scholar
  47. 47.
    Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125(19):5652–5653CrossRefGoogle Scholar
  48. 48.
    Kalele S, Gosavi SW, Urban J, Kulkami SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91(8):1038–1052Google Scholar
  49. 49.
    Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J Magn Magn Mater 321(2):117–122CrossRefGoogle Scholar
  50. 50.
    Kim MJ, Choa YH, Kim DH, Kim KH (2009) Magnetic behaviors of surface modified superparamagnetic magnetite nanoparticles. IEEE Trans Magn 45(6):2446–2449CrossRefGoogle Scholar
  51. 51.
    Laurent S, Forget D, Port M, Roch A et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRefGoogle Scholar
  52. 52.
    Salgueiriño-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19(23):4131–4144CrossRefGoogle Scholar
  53. 53.
    Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22CrossRefGoogle Scholar
  54. 54.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  55. 55.
    Phadtare S, Kumar A, Vinod VP, Dash C et al (2003) Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” and their application as enzyme immobilization templates. Chem Mater 15(10):1944–1949CrossRefGoogle Scholar
  56. 56.
    Kortan AR, Hull R, Opila RL, Bawendi MG et al (1990) Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112(4):1327–1332CrossRefGoogle Scholar
  57. 57.
    Qi LM, Ma JM, Cheng HM, Zhao ZG (1996) Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles. Colloids Surf A: Physicochem Eng Asp 111(3):195–202CrossRefGoogle Scholar
  58. 58.
    Mews A, Eychmueller A, Giersig M, Schooss D et al (1994) Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J Phys Chem 98(3):934–941CrossRefGoogle Scholar
  59. 59.
    Ma GH, He J, Rajiv K, Tang SH et al (2004) Observation of resonant energy transfer in Au:CdS nanocomposite. Appl Phys Lett 84(23):4684–4686CrossRefGoogle Scholar
  60. 60.
    Kamat PV, Shanghavi B (1997) Interparticles electron transfer in metal/semiconductor composites. picosecond dynamics of CdS-capped gold nanoclusters. J Phys Chem B 101(39):7675–7679CrossRefGoogle Scholar
  61. 61.
    Scodeller P, Flexer V, Szamocki R, Calvo EJ (2008) Wired-enzyme core-shell Au nanoparticle biosensor. J Am Chem Soc 130(38):12690–12697CrossRefGoogle Scholar
  62. 62.
    Babes L, Denizot B, Tanguy G, Jacques J (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482CrossRefGoogle Scholar
  63. 63.
    de Farias PMA, Santos BS, Menezes FD, Brasil AG Jr et al (2007) Highly fluorescent semiconductor core-shell CdTe-CdS nanocrystals for monitoring living yeast cells activity. Appl Phys Mater Sci Process 89(4):957–961CrossRefGoogle Scholar
  64. 64.
    de Menezes FD, Brasil AG Jr, Moreira WL, Barbosa LC et al (2005) CdTe/CdS core shell quantum dots for photonic applications. Microelectron J 36(11):989–991CrossRefGoogle Scholar
  65. 65.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  66. 66.
    Schreder B, Schmidt T, Ptatschek V, Spanhel L (2000) Raman characterization of CdTe/CdS-“core-shell”-clusters in colloids and films. J Cryst Growth 214–215(2):782–786CrossRefGoogle Scholar
  67. 67.
    Zimmer JP, Kim SW, Ohnishi S, Tanaka E et al (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128(8):2526–2527CrossRefGoogle Scholar
  68. 68.
    Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15(6):1945–1951CrossRefGoogle Scholar
  69. 69.
    Sounderya N, Zhang Y (2010) Use of core/shell structured nanoparticles for biomedical applications. Recent Patents Biomed Eng 1(1):34–42CrossRefGoogle Scholar
  70. 70.
    Yan E, Ding Y, Chen CJ, Li R et al (2009) Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chem Commun 45(19):2718–2720CrossRefGoogle Scholar
  71. 71.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  72. 72.
    De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241CrossRefGoogle Scholar
  73. 73.
    Williams DB, Carter CB (1996) Transmission electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  74. 74.
    Subramanian R, Denney PE, Singh J, Otooni M (1998) A novel technique for synthesis of silver nanoparticles by laser-liquid interaction. J Mater Sci 33(13):3471–3477CrossRefGoogle Scholar
  75. 75.
    Kumar P, Kumar R, Kanjilal D, Knobel M et al (2008) Ion beam synthesis of Ni nanoparticles embedded in quartz. J Vac Sci Technol B 26(4):36–40CrossRefGoogle Scholar
  76. 76.
    Li H, Vilar RM, Wang YM (1997) Laser beam processing of a SiC particulate reinforced 6061 aluminium metal matrix composite. J Mater Sci 32(20):5545–5550CrossRefGoogle Scholar
  77. 77.
    Dodd AC (2009) A comparison of mechanochemical methods for the synthesis of nanoparticulate nickel oxide. Powder Technol 196(1):30–35CrossRefGoogle Scholar
  78. 78.
    Deng WJ, Xia W, Li C, Tang Y (2009) Formation of ultra-fine grained materials by machining and the characteristics of the deformation fields. J Mater Process Technol 209(9):4521–4526CrossRefGoogle Scholar
  79. 79.
    Sasikumar R, Arunachalam RM (2009) Synthesis of nanostructured aluminium matrix composite (AMC) through machining. Mater Lett 63(28):2426–2428CrossRefGoogle Scholar
  80. 80.
    Sneh O, Clark-Phelps RB, Londergan AR, Winkler J et al (2002) Thin film atomic layer deposition equipment for semiconductor processing. Thin Solid Films 402(1–2):248–261CrossRefGoogle Scholar
  81. 81.
    Wang YY, Cai KF, Yao X (2009) Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature. J Solid State Chem 182(12):3383–3386CrossRefGoogle Scholar
  82. 82.
    Yoo SH, Liu LC, Park S (2009) Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis. J Colloid Interface Sci 339(1):183–186CrossRefGoogle Scholar
  83. 83.
    Ye J, de Broed BV, Palma RD, Libaers W et al (2008) Surface morphology changes on silica-coated gold colloids. Colloids Surf A: Physicochem Eng Asp 322(1–3):225–233CrossRefGoogle Scholar
  84. 84.
    Qi YL, Chen M, Liang S, Yang W et al (2008) Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions. Appl Surf Sci 254(6):1684–1690CrossRefGoogle Scholar
  85. 85.
    Qi YL, Chen M, Liang S, Zhao J et al (2007) Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles. Colloids Surf A: Physicochem Eng Aspects 302(1–3):383–387CrossRefGoogle Scholar
  86. 86.
    Poovarodom S, Bass JD, Hwang SJ, Katz A (2005) Investigation of the core-shell interface in gold@silica nanoparticles: a silica imprinting approach. Langmuir 21(26):12348–12356CrossRefGoogle Scholar
  87. 87.
    Lu Y, Yin YD, Li ZY, Xia YN (2002) Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett 2(7):785–788CrossRefGoogle Scholar
  88. 88.
    Alejandro-Arellano M, Ung T, Blanco Á, Mulvaney P (2000) Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure Appl Chem 72(1–2):257–268Google Scholar
  89. 89.
    Li T, Moon J, Morrone AA, Mecholsky JJ et al (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique. Langmuir 15(13):4328–4334CrossRefGoogle Scholar
  90. 90.
    Fu WY, Yang HB, Chang LX, Li MH et al (2005) Preparation and characteristics of core-shell structure nickel/silica nanoparticles. Colloids Surf A: Physicochem Eng Aspects 262(1–3):71–75CrossRefGoogle Scholar
  91. 91.
    Lu XG, Liang GY, Sun ZB, Zhang W (2005) Ferromagnetic Co/SiO2 core/shell structured nanoparticles prepared by a novel aqueous solution method. Mater Sci Eng B 117(2):147–152CrossRefGoogle Scholar
  92. 92.
    Cha HJ, Kim YH, Cha HG, Kang YS (2007) Preparation and characterization of Ag (core)/SiO2 (shell) nanoparticles. Surf Rev Lett 14(4):693–696CrossRefGoogle Scholar
  93. 93.
    Kanehara M, Watanabe Y, Teranishi T (2009) Thermally stable silica-coated hydrophobic gold nanoparticles. J Nanosci Nanotechnol 9(1):673–675CrossRefGoogle Scholar
  94. 94.
    Ma ZY, Dosev D, Nichkova M, Dumas RK et al (2009) Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities. J Magn Magn Mater 321(10):1368–1371CrossRefGoogle Scholar
  95. 95.
    Mazaleyrat F, Ammar M, LoBue M, Bonnet JP et al (2009) Silica coated nanoparticles: synthesis, magnetic properties and spin structure. J Alloys Compd 483(1–2):473–478CrossRefGoogle Scholar
  96. 96.
    Dong BH, Cao LX, Su G, Liu W et al (2009) Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions. J Colloid Interface Sci 339(1):78–82CrossRefGoogle Scholar
  97. 97.
    Ammar M, Mazaleyrat F, Bonnet JP, Audebert P et al (2007) Synthesis and characterization of core-shell structure silica-coated Fe29.5Ni70.5 nanoparticles. Nanotechnology 18(28):285606CrossRefGoogle Scholar
  98. 98.
    Lee J, Lee YJ, Youn JK, Na HB et al (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4(1):143–152CrossRefGoogle Scholar
  99. 99.
    Aliev FG, Correa-Duarte MA, Mamedov A, Ostrander JW et al (1999) Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties. Adv Mater 11(12):1006–1010CrossRefGoogle Scholar
  100. 100.
    Lien YH, Wu TM (2008) Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J Colloid Interf Sci 326(2):517–521CrossRefGoogle Scholar
  101. 101.
    He R, You XG, Shao J, Gao F et al (2007) Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology 18(31):315601CrossRefGoogle Scholar
  102. 102.
    Correa-Duarte MA, Giersig M, Liz-Marzán LM (1998) Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett 286(5–6):497–501CrossRefGoogle Scholar
  103. 103.
    Kobayashi Y, Shimizu N, Misawa K, Takeda M et al (2008) Preparation of amine free silica-coated AgI nanoparticles with modified Stöber method. Surf Eng 24(4):248–252CrossRefGoogle Scholar
  104. 104.
    Rogach AL, Nagesha D, Ostrander JW, Giersig M et al (2000) “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 12(9):2676–2685CrossRefGoogle Scholar
  105. 105.
    Zhu MQ, Han JJ, Li ADQ (2007) CdSe/CdS/SiO2 core/shell/shell nanoparticles. J Nanosci Nanotechnol 7(7):2343–2348CrossRefGoogle Scholar
  106. 106.
    Zhang SC, Li XG (2004) Synthesis and characterization of CaCO3@SiO2 core-shell nanoparticles. Powder Technol 141(1–2):75–79CrossRefGoogle Scholar
  107. 107.
    Wang D, Salaueiriño-Maceira V, Liz-Marzán LM, Caruso F (2002) Gold-silica inverse opals by colloidal crystal templating. Adv Mater 14(12):908–912CrossRefGoogle Scholar
  108. 108.
    Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18):4329–4335CrossRefGoogle Scholar
  109. 109.
    Kückelhaus S, Reis SC, Carneiro MF, Tedesco AC et al (2004) In vivo investigation of cobalt ferrite-based magnetic fluid and magnetoliposomes using morphological tests. J Magn Magn Mater 272:2402–2403CrossRefGoogle Scholar
  110. 110.
    Baldi G, Bonacchi D, Innocenti C, Lorenzi G et al (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311(1):10–16CrossRefGoogle Scholar
  111. 111.
    Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182CrossRefGoogle Scholar
  112. 112.
    Lin YS, Haynes CL (2009) Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chem Mater 21(17):3979–3986CrossRefGoogle Scholar
  113. 113.
    Cannas C, Musinu A, Ardu A, Orrù F et al (2010) CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study. Chem Mater 22(11):3353–3361CrossRefGoogle Scholar
  114. 114.
    Hu YX, Ge JP, Sun YG, Zhang TR et al (2007) A self-templated approach to TiO2 microcapsules. Nano Lett 7(6):1832–1836CrossRefGoogle Scholar
  115. 115.
    Ge JP, Hu YX, Biasini M, Beyermann WP et al (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46(23):4342–4345CrossRefGoogle Scholar
  116. 116.
    Ge JP, Huynh T, Hu YX, Yin YD (2008) Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett 8(3):931–934CrossRefGoogle Scholar
  117. 117.
    Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154(2):A103–A108CrossRefGoogle Scholar
  118. 118.
    Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid-State Lett 6(9):A198–A201CrossRefGoogle Scholar
  119. 119.
    Limthongkul P, Jiang YI, Dudney NJ, Chiang YM (2003) Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater 51(4):1103–1113CrossRefGoogle Scholar
  120. 120.
    Chan CK, Peng HL, Liu G, Mcllwrath K et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRefGoogle Scholar
  121. 121.
    Cui LF, Ruffo R, Chan CK, Peng HL et al (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9(1):491–495CrossRefGoogle Scholar
  122. 122.
    Freeman RG, Hommer MB, Grabar KC, Jackson MA et al (1996) Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties. J Phys Chem 100(2):718–724CrossRefGoogle Scholar
  123. 123.
    Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical application. New J Chem 22(11):1179–1201CrossRefGoogle Scholar
  124. 124.
    Tomas JM, Johnson BFG, Raja R, Sankar G et al (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36(1):20–30CrossRefGoogle Scholar
  125. 125.
    Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and application of dendrimer-encapsulated nanoparticles. J Phys Chem B 109(2):692–704CrossRefGoogle Scholar
  126. 126.
    Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533CrossRefGoogle Scholar
  127. 127.
    Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104(49):11708–11718CrossRefGoogle Scholar
  128. 128.
    Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of “core-shell” type structures. Nano Lett 1(6):319–322CrossRefGoogle Scholar
  129. 129.
    Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2(11):1235–1237CrossRefGoogle Scholar
  130. 130.
    Shibata T, Bunker BA, Zhang ZY, Meisel D et al (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124(40):11989–11996CrossRefGoogle Scholar
  131. 131.
    Chen DH, Chen CJ (2002) Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12(5):1557–1562CrossRefGoogle Scholar
  132. 132.
    Liu MZ, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108(19):5882–5888CrossRefGoogle Scholar
  133. 133.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interf Sci 275(2):496–502CrossRefGoogle Scholar
  134. 134.
    Hang CC, Yang Z, Chang HT (2004) Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 20(15):6089–6092CrossRefGoogle Scholar
  135. 135.
    Song JH, Kim FK, Kim D, Yang PD (2005) Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem Eur J 11(3):910–916CrossRefGoogle Scholar
  136. 136.
    Liu FK, Huang PW, Chang YC, Ko FH et al (2005) Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 21(6):2519–2525CrossRefGoogle Scholar
  137. 137.
    Xu SP, Zhao B, Xu WQ, Fan YG (2005) Preparation of Au-Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS). Colloids Surf A: Physicochem Eng Aspects 257–258:313–317CrossRefGoogle Scholar
  138. 138.
    Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2005) Synthesis, characterization, and structure-selective extraction of 1-3 nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J Am Chem Soc 127(3):1015–1024CrossRefGoogle Scholar
  139. 139.
    Pedersen DB, Wang SL, Duncan EJS, Liang SH (2007) Adsorbate-induced diffusion of Ag and Au atoms out of the cores of Ag@Au, Au@Ag, and Ag@AgI core-shell nanoparticles. J Phys Chem C 111(37):13665–13672CrossRefGoogle Scholar
  140. 140.
    Rai A, Chaudhary M, Ahmad A, Bhargava S et al (2007) Synthesis of triangular Au core-Ag shell nanoparticles. Mater Res Bull 42(7):1212–1220CrossRefGoogle Scholar
  141. 141.
    Tusji M, Miyamae N, Lim S, Kimura K (2006) Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst Growth Des 6(8):1801–1807CrossRefGoogle Scholar
  142. 142.
    Tsuji M, Matsuo R, Jiang P, Miyamae N (2008) Shape-dependent evolution of Au@Ag core-shell nanocrystals by PVP-assisted N,N-dimethylformamide reduction. Cryst Growth Des 8(7):2528–2536CrossRefGoogle Scholar
  143. 143.
    Yin YD, Rioux RM, Erdonmez CK, Hughes S et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304(5671):711–714CrossRefGoogle Scholar
  144. 144.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  145. 145.
    Wang Y, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17(4):473–477CrossRefGoogle Scholar
  146. 146.
    Liang HP, Zhang HM, Hu JS, Guo YG et al (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew Chem Int Ed 116(12):1566–1569CrossRefGoogle Scholar
  147. 147.
    Lou XW, Wang Y, Yuan C, Lee JY et al (2006) Template-free synthesis of SnO2 hollow nanostructure with high lithium storage capacity. Adv Mater 18(17):2325–2329CrossRefGoogle Scholar
  148. 148.
    Zeng HC (2006) Synthetic architecture of interior space for inorganic nanostructure. J Mater Chem 16(7):649–662CrossRefGoogle Scholar
  149. 149.
    Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRefGoogle Scholar
  150. 150.
    Yang ZZ, Niu ZW, Lu YF, Hu ZB et al (2003) Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Ed 42(17):1943–1945CrossRefGoogle Scholar
  151. 151.
    Chen M, Wu L, Zhou S, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806CrossRefGoogle Scholar
  152. 152.
    Lou XW, Yuan CL, Archer LA (2007) Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small 3(2):261–265CrossRefGoogle Scholar
  153. 153.
    Lou XW, Yuan C, Rhoades E, Zhang Q et al (2006) Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells. Adv Funct Mater 16(13):1679–1684CrossRefGoogle Scholar
  154. 154.
    Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124(26):7642–7643CrossRefGoogle Scholar
  155. 155.
    Dhas NA, Suslick KS (2005) Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J Am Chem Soc 127(8):2368–2369CrossRefGoogle Scholar
  156. 156.
    Zhou J, Liu J, Yang R, Lao CS et al (2006) SiC-shell nanostructures fabricated by replicating ZnO nano-objects: a technique for producing hollow nanostructures of desired shape. Small 2(11):1344–1347CrossRefGoogle Scholar
  157. 157.
    Kamata K, Lu Y, Xia YN (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125(9):2384–2385CrossRefGoogle Scholar
  158. 158.
    Zhu YF, Kockrick E, Ikoma T, Hanagata N (2009) An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chem Mater 21(12):2547–2553CrossRefGoogle Scholar
  159. 159.
    Zhou JB, Tang C, Cheng B, Yu JG et al (2012) Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes. ACS Appl Mater Interfaces 4(4):2174–2179CrossRefGoogle Scholar
  160. 160.
    Yu JG, Yu XX (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42(13):4902–4907CrossRefGoogle Scholar
  161. 161.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15(16):4195–4203CrossRefGoogle Scholar
  162. 162.
    Wang YQ, Nikitin K, McComb DW (2008) Fabrication of Au-Cu2O core-shell nanocube heterostructures. Chem Phys Lett 456(4–6):202–205CrossRefGoogle Scholar
  163. 163.
    Wagner JB, Sköld N, Wallenberg LR, Samuelson L (2010) Growth and segregation of Ga-As-AlxIn1-xP core-shell nanowires. J Cryst Growth 312(10):1755–1760CrossRefGoogle Scholar
  164. 164.
    Garcia-Gutierrez D, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M (2004) HAADF study of Au-Pt core-shell bimetallic nanoparticles. Appl Phys Mater Sci Process 79(3):481–487CrossRefGoogle Scholar
  165. 165.
    Ren F, Jiang CZ, Wang YH, Wang QQ et al (2006) The problem of core/shell nanoclusters formation during ion implantation. Nucl Instrum Methods Phys Res B 245(2):427–430CrossRefGoogle Scholar
  166. 166.
    Wang JX, Inada H, Wu LJ, Zhu YM et al (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131(47):17298–17302CrossRefGoogle Scholar
  167. 167.
    Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19(33):5945–5951CrossRefGoogle Scholar
  168. 168.
    Strasser P, Koh S, Anniyev T, Greeley J et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460CrossRefGoogle Scholar
  169. 169.
    Wu Y, Jiang P, Jiang M, Wang TW et al (2009) The shape evolution of gold seeds and gold@silver core-shell nanostructures. Nanotechnology 20(30):305602CrossRefGoogle Scholar
  170. 170.
    Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3(6):478–482Google Scholar
  171. 171.
    Li ZY, Yuan J, Chen Y, Palmer RE et al (2005) Direct imaging of core-shell structure in silver-gold bimetallic nanoparticles. Appl Phys Lett 87(24):243103CrossRefGoogle Scholar
  172. 172.
    Habas SE, Lee H, Radmilovic V, Somorjai GA et al (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6(9):692–697CrossRefGoogle Scholar
  173. 173.
    Sanchez SI, Small MW, Zuo JM, Nuzzo RG (2009) Structure characterization of Pt-Pd core-shell nanoclusters at atomic resolution. J Am Chem Soc 131(24):8683–8689CrossRefGoogle Scholar
  174. 174.
    Lim B, Jiang MJ, Camargo PHC, Cho EC (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  175. 175.
    Lin G, Heggen M, Rudi S, Strasser P (2012) Core-shell compositional fine structures of dealloyed PtxNi1–x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12(10):5423–5430CrossRefGoogle Scholar
  176. 176.
    Kim K, Kim KL, Shin KS (2011) Coreduced Pt/Ag alloy nanoparticles: surface-enhanced raman scattering and electrocatalytic activity. J Phys Chem C 115(47):23374–23380CrossRefGoogle Scholar
  177. 177.
    Greene LE, Law M, Yuhas BD, Yang PD (2007) ZnO-TiO2 core-shell nanorod/P3HT solar cells. J Phys Chem C 111(50):18451–18456CrossRefGoogle Scholar
  178. 178.
    Lin HM, Chen YL, Yang J, Liu YC et al (2003) Synthesis and characterization of core-shell CaP@GaN and GaN@GaP nanowires. Nano Lett 3(4):537–541CrossRefGoogle Scholar
  179. 179.
    Law M, Greene LE, Radenovic A, Kuykendall T et al (2006) ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652–22663CrossRefGoogle Scholar
  180. 180.
    Lauhon LJ, Gudiksen MS, Wang DL, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911):57–61CrossRefGoogle Scholar
  181. 181.
    Algra RE, Hocevar M, Verheijen MA, Zardo I et al (2011) Crystal structure transfer in core/shell nanowires. Nano Lett 11(4):1690–1694CrossRefGoogle Scholar
  182. 182.
    Kim H, Achermann M, Balet LP, Hollingsworth JA et al (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127(2):544–546CrossRefGoogle Scholar
  183. 183.
    Lambert K, Geyter BD, Moreels I, Hens Z (2009) PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study. Chem Mater 21(5):778–780CrossRefGoogle Scholar
  184. 184.
    Kong XY, Ding Y, Wang ZL (2004) Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes. J Phys Chem B 108(2):570–574CrossRefGoogle Scholar
  185. 185.
    Pietryga JM, Werder DJ, Williams DJ, Casson JL (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130(14):4879–4885CrossRefGoogle Scholar
  186. 186.
    Koike K, Honden T, Makabe I, Yan FP et al (2003) PbTe/CdTe single quantum wells grown on GaAs (100) substrates by molecular beam epitaxy. J Cryst Growth 257(1–2):212–217CrossRefGoogle Scholar
  187. 187.
    Huang MH, Mao S, Feick H, Yan HQ et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897CrossRefGoogle Scholar
  188. 188.
    Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107(3):659CrossRefGoogle Scholar
  189. 189.
    Comini E, Faglia G, Sberveglieri G, Pan ZW et al (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869CrossRefGoogle Scholar
  190. 190.
    Hughes WL, Wang ZL (2003) Nanobelts as nanocantilevers. Appl Phys Lett 82(17):2886CrossRefGoogle Scholar
  191. 191.
    Bai XD, Gao PX, Wang ZL, Wang EG (2003) Dual-mode mechanical resonance of individual ZnO nanobelts. Appl Phys Lett 82(26):4806CrossRefGoogle Scholar
  192. 192.
    Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291(5510):1947CrossRefGoogle Scholar
  193. 193.
    Gallaso F (1970) Structure and properties of inorganic solids. Pergamon, OxfordGoogle Scholar
  194. 194.
    Nguyen VL, Ohtaki M, Matsubara T, Cao MT et al (2012) New experimental evidences of Pt-Pd bimetallic nanoparticles with core-shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy. J Phys Chem C 116(22):12265–12274CrossRefGoogle Scholar
  195. 195.
    Schlötzer-Schrehardt U, Körtje KH, Erb C (2001) Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material. Curr Eye Res 22(2):154–162CrossRefGoogle Scholar
  196. 196.
    Leapman RD, Kocsis E, Zhang G, Talbot TL et al (2004) Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100(1–2):115–125CrossRefGoogle Scholar
  197. 197.
    Wang YQ, Duan XF, Cao LM, Wang WK (2002) One-dimensional growth mechanism of amorphous boron nanowires. Chem Phys Lett 359(3–4):273–277CrossRefGoogle Scholar
  198. 198.
    Wang YQ, Duan XF, Cao LM, Li G et al (2002) Application of energy-filtering transmission electron microscopy to characterize amorphous boron nanowires. J Cryst Growth 244(1):123–128CrossRefGoogle Scholar
  199. 199.
    Tambe MJ, Lim SK, Smith MJ, Allard LF et al (2008) Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures. Appl Phys Lett 93(15):151917CrossRefGoogle Scholar
  200. 200.
    Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRefGoogle Scholar
  201. 201.
    Zhang YF, Tang YH, Wang N, Lee CS (2000) Germanium nanowires sheathed with an oxide layer. Phys Rev B 61(7):4518–4521CrossRefGoogle Scholar
  202. 202.
    Cao LM, Zhang Z, Sun LL, Gao CX et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704CrossRefGoogle Scholar
  203. 203.
    Qian F, Li Y, Gradečak S, Wang DL et al (2004) Gallium nitride-based nanowire radial heterostructures. Nano Lett 4(10):1975–1979CrossRefGoogle Scholar
  204. 204.
    Hiramatsu K, Nishiyama K, Motogaito A, Miyake H et al (1999) Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: effects of reactor pressure in MOVPE growth. Appl Mater Sci 176(1):535–543Google Scholar
  205. 205.
    Gerthsen D, Hahn E, Neubauer B, Potin V et al (2003) Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy. Phys Status Solidi C 0(6):1668–1683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Cultivation Base for State Key LaboratoryQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations