Advertisement

TEM for Characterization of Nanowires and Nanorods

  • Sarah K. St. AngeloEmail author
Chapter

Abstract

Transmission electron microscopy (TEM) and related techniques allow for imaging of nanomaterials to determine the material size, shape, composition, and crystal structure. In situ TEM measurements allow for observation of dynamic processes, such as nanowire growth. This chapter describes the application of ex situ and in situ TEM techniques to the analysis of nanowires/nanorods as a subset of nanomaterials. Nanowires refer to anisotropic metal, semiconductor, metal oxide, and/or alloyed structures that may be cylindrical solids, core-shell structures, or hollow tube-like structures. Herein, “bottom-up” nanowires – those synthesized by monomer addition or particle aggregation – are considered for how their analyses may be aided by TEM-based techniques. Lithographically defined wire-like structures, carbon nanotubes, and graphene-based scroll structures are not considered in this chapter.

Keywords

Scanning Tunneling Microscopy Liquid Cell Nanowire Growth Transmission Electron Microscopy Technique Kirkendall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Sarah K. St. Angelo acknowledges support from the Dickinson College Research & Development Committee.

References

  1. 1.
    Nellist P, Chisholm M, Dellby N, Krivanek O, Murfitt M, Szilagyi Z, Lupini A, Borisevich A, Sides W, Pennycook S (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305(5691):1741–1741CrossRefGoogle Scholar
  2. 2.
    Stach EA (2008) Real-time observations with electron microscopy. Mater Today 11:50–58CrossRefGoogle Scholar
  3. 3.
    Borisevich A, Lupini A, Pennycook S (2006) Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci USA 103(9):3044–3048CrossRefGoogle Scholar
  4. 4.
    Sharma R, Weiss K (1998) Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Tech 42(4):270–280CrossRefGoogle Scholar
  5. 5.
    Sharma R (2005) An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res 20(7):1695–1707CrossRefGoogle Scholar
  6. 6.
    Sharma R (2009) Kinetic measurements from in situ TEM observations. Microsc Res Tech 72(3):144–152CrossRefGoogle Scholar
  7. 7.
    Sharma R (2012) Experimental set up for in situ transmission electron microscopy observations of chemical processes. Micron 43(11):1147–1155CrossRefGoogle Scholar
  8. 8.
    de Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11):695–704CrossRefGoogle Scholar
  9. 9.
    Murray CB (2009) Watching nanocrystals grow. Science 324(5932):1276–1277CrossRefGoogle Scholar
  10. 10.
    Erts D, Polyakov B, Lohmus A, Lohmus R, Olin H, Morris M, Holmes J (2003) Metallic and semiconducting nanowires studied by TEM-SPM. Phys Low-Dimens Struct 3–4:65–73Google Scholar
  11. 11.
    Pokropivny A, Erts D, Pokropivny V, Lohmus A, Lohmus R, Olin H (2004) Study of nanoscale contacts with the help of combined TEM-AFM technique and theoretical MD-TM calculations: in situ transformations of gold nanowires. Phys Low-Dimens Struct 1–2:83–90Google Scholar
  12. 12.
    Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010):1515–1520CrossRefGoogle Scholar
  13. 13.
    Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY (2012) In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2(7):722–741CrossRefGoogle Scholar
  14. 14.
    Wu Y, Yang P (2001) Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 123(13):3165–3166CrossRefGoogle Scholar
  15. 15.
    Nichols PL, Sun M, Ning C (2011) Influence of supersaturation and spontaneous catalyst formation on the growth of PbS wires: toward a unified understanding of growth modes. ACS Nano 5(11):8730–8738CrossRefGoogle Scholar
  16. 16.
    Morales A, Lieber C (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211CrossRefGoogle Scholar
  17. 17.
    Morber JR, Ding Y, Haluska MS, Li Y, Liu P, Wang ZL, Snyder RL (2006) PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. J Phys Chem B 110(43):21672–21679CrossRefGoogle Scholar
  18. 18.
    Kast M, Schroeder P, Hyun YJ, Pongratz P, Brueckl H (2007) Synthesis of single-crystalline Zn metal nanowires utilizing cold-wall physical vapor deposition. Nano Lett 7(8):2540–2544CrossRefGoogle Scholar
  19. 19.
    Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749CrossRefGoogle Scholar
  20. 20.
    Chen Z, Waje M, Li W, Yan Y (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed 46(22):4060–4063CrossRefGoogle Scholar
  21. 21.
    Zhang X, Li D, Dong D, Wang H, Webley PA (2010) One-step fabrication of ordered Pt-Cu alloy nanotube arrays for ethanol electrooxidation. Mater Lett 64(10):1169–1172CrossRefGoogle Scholar
  22. 22.
    Alia SM, Zhang G, Kisailus D, Li D, Gu S, Jensen K, Yan Y (2010) Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv Funct Mater 20(21):3742–3746CrossRefGoogle Scholar
  23. 23.
    Guo S, Dong S, Wang E (2010) Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ Sci 3(9):1307–1310CrossRefGoogle Scholar
  24. 24.
    Gu X, Cong X, Ding Y (2010) Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation. Chemphyschem 11(4):841–846CrossRefGoogle Scholar
  25. 25.
    Cui C, Li H, Yu S (2011) Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: a highly reactive, stable, and restorable fuel cell catalyst. Chem Sci 2(8):1611–1614CrossRefGoogle Scholar
  26. 26.
    Ci S, Zou J, Zeng G, Luo S, Wen Z (2012) Single crystalline Pt nanotubes with superior electrocatalytic stability. J Mater Chem 22(33):16732–16737CrossRefGoogle Scholar
  27. 27.
    Li H, Cui C, Zhao S, Yao H, Gao M, Fan F, Yu S (2012) Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv Energy Mater 2(10):1182–1187CrossRefGoogle Scholar
  28. 28.
    Alia SM, Jensen KO, Pivovar BS, Yan Y (2012) Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts. ACS Catal 2(5):858–863CrossRefGoogle Scholar
  29. 29.
    Ding L, Wang A, Li G, Liu Z, Zhao W, Su C, Tong Y (2012) Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134(13):5730–5733CrossRefGoogle Scholar
  30. 30.
    Choi B, Lee YW, Kang SW, Hong JW, Kim J, Park I, Han SW (2012) Multimetallic alloy nanotubes with nanoporous framework. ACS Nano 6(6):5659–5667CrossRefGoogle Scholar
  31. 31.
    Lazar F, Morin A, Pauc N, Gentile P, Donet S, Guetaz L, Sicardy O (2012) Supported platinum nanotubes array as new fuel cell electrode architecture. Electrochim Acta 78:98–108CrossRefGoogle Scholar
  32. 32.
    Meng F, Jin S (2012) The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett 12(1):234–239CrossRefGoogle Scholar
  33. 33.
    Gorzny ML, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viral template. Adv Funct Mater 20(8):1295–1300CrossRefGoogle Scholar
  34. 34.
    Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei J, Vajtai R, Ajayan PM (2011) Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J Phys Chem C 115(19):9403–9409CrossRefGoogle Scholar
  35. 35.
    Mor G, Shankar K, Paulose M, Varghese O, Grimes C (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6(2):215–218CrossRefGoogle Scholar
  36. 36.
    Khan M, Jung H, Yang O (2006) Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J Phys Chem B 110(13):6626–6630CrossRefGoogle Scholar
  37. 37.
    Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130(40):13364–13372CrossRefGoogle Scholar
  38. 38.
    Ratanatawanate C, Xiong C, Balkus KJ Jr (2008) Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2(8):1682–1688CrossRefGoogle Scholar
  39. 39.
    Guerrero S, Di Serio M, Li RF, Wolf EE (2009) Parallel reactor activity studies of the preferential oxidation of CO on transition metals supported on TiO2 and TiO2 nanotubes. Catal Lett 130(1–2):19–27CrossRefGoogle Scholar
  40. 40.
    Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H, Yang P (2003) Single-crystal gallium nitride nanotubes. Nature 422(6932):599–602CrossRefGoogle Scholar
  41. 41.
    Ai L, Jiang J (2012) Self-sacrificial templating synthesis of porous quaternary Cu-Fe-Sn-S semiconductor nanotubes via microwave irradiation. Nanotechnology 23(49):495601CrossRefGoogle Scholar
  42. 42.
    Rao C, Govindaraj A, Deepak F, Gunari N, Nath M (2001) Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl Phys Lett 78(13):1853–1855CrossRefGoogle Scholar
  43. 43.
    Wang X, Gao P, Li J, Summers C, Wang Z (2002) Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Adv Mater 14(23):1732–+CrossRefGoogle Scholar
  44. 44.
    Sun Y, Mayers B, Xia Y (2003) Metal nanostructures with hollow interiors. Adv Mater 15(7–8):641–646CrossRefGoogle Scholar
  45. 45.
    Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3(5):675–679CrossRefGoogle Scholar
  46. 46.
    Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901CrossRefGoogle Scholar
  47. 47.
    Sun Y, Wiley B, Li Z, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126(30):9399–9406CrossRefGoogle Scholar
  48. 48.
    Dai G, Yu J, Liu G (2011) Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays. J Phys Chem C 115(15):7339–7346CrossRefGoogle Scholar
  49. 49.
    Zeng H (2006) Synthetic architecture of interior space for inorganic nanostructures. J Mater Chem 16(7):649–662CrossRefGoogle Scholar
  50. 50.
    Fan HJ, Goesele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3(10):1660–1671CrossRefGoogle Scholar
  51. 51.
    Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130–142Google Scholar
  52. 52.
    Yin Y, Rioux R, Erdonmez C, Hughes S, Somorjai G, Alivisatos A (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304(5671):711–714CrossRefGoogle Scholar
  53. 53.
    Du N, Zhang H, Chen B, Ma X, Yang D (2008) One-pot, large-scale synthesis of SnO2 nanotubes at room temperature. Chem Commun 26:3028–3030CrossRefGoogle Scholar
  54. 54.
    Chen G, Sun S, Sun X, Fan W, You T (2009) Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through Kirkendall diffusion. Inorg Chem 48(4):1334–1338CrossRefGoogle Scholar
  55. 55.
    Sreeprasad TS, Pradeep T (2011) Tubular nanostructures of Cr2Te4O11 and Mn2TeO6 through room-temperature chemical transformations of tellurium nanowires. J Phys Chem C 115(33):16524–16536CrossRefGoogle Scholar
  56. 56.
    Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Goesele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5(8):627–631CrossRefGoogle Scholar
  57. 57.
    Cayron C, Den Hertog M, Latu-Romain L, Mouchet C, Secouard C, Rouviere J, Rouviere E, Simonato J (2009) Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins. J Appl Crystallogr 42:242–252CrossRefGoogle Scholar
  58. 58.
    den Hertog MI, Cayron C, Gentile P, Dhalluin F, Oehler F, Baron T, Rouviere JL (2012) Hidden defects in silicon nanowires. Nanotechnology 23(2):025701CrossRefGoogle Scholar
  59. 59.
    Lopez FJ, Givan U, Connell JG, Lauhon LJ (2011) Silicon nanowire polytypes: identification by Raman spectroscopy, generation mechanism, and misfit strain in homostructures. ACS Nano 5(11):8958–8966CrossRefGoogle Scholar
  60. 60.
    Hemesath ER, Schreiber DK, Kisielowski CF, Petford-Long AK, Lauhon LJ (2012) Atomic structural analysis of nanowire defects and polytypes enabled through cross-sectional lattice imaging. Small 8(11):1717–1724CrossRefGoogle Scholar
  61. 61.
    Koren E, Hyun JK, Givan U, Hemesath ER, Lauhon LJ, Rosenwaks Y (2011) Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett 11(1):183–187CrossRefGoogle Scholar
  62. 62.
    Allen JE, Hemesath ER, Perea DE, Lensch-Falk JL, Li ZY, Yin F, Gass MH, Wang P, Bleloch AL, Palmer RE, Lauhon LJ (2008) High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol 3(3):168–173CrossRefGoogle Scholar
  63. 63.
    Perea DE, Hemesath ER, Schwalbach EJ, Lensch-Falk JL, Voorhees PW, Lauhon LJ (2009) Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat Nanotechnol 4(5):315–319CrossRefGoogle Scholar
  64. 64.
    Hemesath ER, Schreiber DK, Gulsoy EB, Kisielowski CF, Petford-Long AK, Voorhees PW, Lauhon LJ (2012) Catalyst incorporation at defects during nanowire growth. Nano Lett 12(1):167–171CrossRefGoogle Scholar
  65. 65.
    Liu HH, Schmidt S, Poulsen HF, Godfrey A, Liu ZQ, Sharon JA, Huang X (2011) Three-dimensional orientation mapping in the transmission electron microscope. Science 332(6031):833–834CrossRefGoogle Scholar
  66. 66.
    Alivisatos A (2000) Biomineralization – naturally aligned nanocrystals. Science 289(5480):736–737CrossRefGoogle Scholar
  67. 67.
    Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots, to nanorods. Angew Chem Int Ed 41(7):1188–1191CrossRefGoogle Scholar
  68. 68.
    Halder A, Ravishankar N (2007) Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv Mater 19(14):1854–1858CrossRefGoogle Scholar
  69. 69.
    Yu J, Joo J, Park H, Baik S, Kim Y, Kim S, Hyeon T (2005) Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc 127(15):5662–5670CrossRefGoogle Scholar
  70. 70.
    Cho K, Talapin D, Gaschler W, Murray C (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147CrossRefGoogle Scholar
  71. 71.
    Tang Z, Kotov N, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579):237–240CrossRefGoogle Scholar
  72. 72.
    Polleux J, Pinna N, Antonietti M, Niederberger M (2004) Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv Mater 16(5):436–439CrossRefGoogle Scholar
  73. 73.
    Shen S, Zhuang J, Xu X, Nisar A, Hu S, Wang X (2009) Size effects in the oriented-attachment growth process: the case of Cu nanoseeds. Inorg Chem 48(12):5117–5128CrossRefGoogle Scholar
  74. 74.
    Lee E, Ribeiro C, Longo E, Leite E (2005) Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals. J Phys Chem B 109(44):20842–20846CrossRefGoogle Scholar
  75. 75.
    Penn R, Banfield J (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281(5379):969–971CrossRefGoogle Scholar
  76. 76.
    Du N, Zhang H, Chen B, Ma X, Yang D (2007) Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature. J Phys Chem C 111(34):12677–12680CrossRefGoogle Scholar
  77. 77.
    O'Sullivan C, Gunning RD, Sanyal A, Barrett CA, Geaney H, Laffir FR, Ahmed S, Ryan KM (2009) Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J Am Chem Soc 131(34):12250–12257CrossRefGoogle Scholar
  78. 78.
    Deng Z, Chen D, Tang F, Meng X, Ren J, Zhang L (2007) Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: end-to-end versus side-by-side. J Phys Chem C 111(14):5325–5330CrossRefGoogle Scholar
  79. 79.
    Kodambaka S, Tersoff J, Reuter MC, Ross FM (2007) Germanium nanowire growth below the eutectic temperature. Science 316(5825):729–732CrossRefGoogle Scholar
  80. 80.
    Wen C, Reuter MC, Bruley J, Tersoff J, Kodambaka S, Stach EA, Ross FM (2009) Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 326(5957):1247–1250CrossRefGoogle Scholar
  81. 81.
    Prikhodko SV, Sitzman S, Gambin V, Kodambaka S (2008) In situ electron backscattered diffraction of individual GaAs nanowires. Ultramicroscopy 109(1):133–138CrossRefGoogle Scholar
  82. 82.
    Gamalski AD, Tersoff J, Sharma R, Ducati C, Hofmann S (2010) Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett 10(8):2972–2976CrossRefGoogle Scholar
  83. 83.
    Diaz RE, Sharma R, Jarvis K, Zhang Q, Mahajan S (2012) Direct observation of nucleation and early stages of growth of GaN nanowires. J Crystal Growth 341(1):1–6CrossRefGoogle Scholar
  84. 84.
    Bjork M, Ohlsson B, Sass T, Persson A, Thelander C, Magnusson M, Deppert K, Wallenberg L, Samuelson L (2002) One-dimensional steeplechase for electrons realized. Nano Lett 2(2):87–89CrossRefGoogle Scholar
  85. 85.
    Schmid H, Bjoerk MT, Knoch J, Karg S, Riel H, Riess W (2009) Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett 9(1):173–177CrossRefGoogle Scholar
  86. 86.
    Clark TE, Nimmatoori P, Lew K, Pan L, Redwing JM, Dickey EC (2008) Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si(1-x)Ge(x) heterostructure nanowires. Nano Lett 8(4):1246–1252CrossRefGoogle Scholar
  87. 87.
    Zheng H, Smith RK, Jun Y, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932):1309–1312CrossRefGoogle Scholar
  88. 88.
    Li D, Nielsen MH, Lee JRI, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-Specific interactions control crystal growth by oriented attachment. Science 336(6084):1014–1018CrossRefGoogle Scholar
  89. 89.
    Evans JE, Jungjohann KL, Browning ND, Arslan I (2011) Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11(7):2809–2813CrossRefGoogle Scholar
  90. 90.
    Almeida TP, Fay MW, Zhu Y, Brown PD (2012) In situ TEM investigation of beta-FeOOH and alpha-Fe2O3 nanorods. Physica E 44(6):1058–1061CrossRefGoogle Scholar
  91. 91.
    Ribeiro C, Longo E, Leite ER (2007) Tailoring of heterostructures in a SnO2/TiO2 system by the oriented attachment mechanism. Appl Phys Lett 91(10):103105CrossRefGoogle Scholar
  92. 92.
    Liao H, Cui L, Whitelam S, Zheng H (2012) Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084):1011–1014CrossRefGoogle Scholar
  93. 93.
    Chen CL, Mori H (2009) In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires. Nanotechnology 20(28):285604CrossRefGoogle Scholar
  94. 94.
    Huang C, Hsin C, Wang C, Chu F, Kao C, Chen J, Huang Y, Lu K, Wu W, Chen L (2012) Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. Nanoscale 4(15):4702–4706CrossRefGoogle Scholar
  95. 95.
    Zheng H, Rivest JB, Miller TA, Sadtler B, Lindenberg A, Toney MF, Wang L, Kisielowski C, Alivisatos AP (2011) Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333(6039):206–209CrossRefGoogle Scholar
  96. 96.
    Davami K, Ghassemi HM, Sun X, Yassar RS, Lee J, Meyyappan M (2011) In situ observation of morphological change in CdTe nano- and submicron wires. Nanotechnology 22(43):435204CrossRefGoogle Scholar
  97. 97.
    Davami K, Ghassemi HM, Yassar RS, Lee J, Meyyappan M (2012) Thermal breakdown of ZnTe nanowires. Chemphyschem 13(1):347–352CrossRefGoogle Scholar
  98. 98.
    Kallesoe C, Wen C, Booth TJ, Hansen O, Boggild P, Ross FM, Molhave K (2012) In situ TEM creation and electrical characterization of nanowire devices. Nano Lett 12(6):2965–2970CrossRefGoogle Scholar
  99. 99.
    Xu Z, Golberg D, Bando Y (2009) In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. Nano Lett 9(6):2251–2254CrossRefGoogle Scholar
  100. 100.
    Nam S, Chung H, Lo YC, Qi L, Li J, Lu Y, Johnson ATC, Jung Y, Nukala P, Agarwal R (2012) Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336(6088):1561–1566CrossRefGoogle Scholar
  101. 101.
    Shen J, Vincent P, Blanchard NP, Nicolle J, Choueib M, Purcell ST, Poncharal P, Salles V, Brioude A (2012) Physical properties of individual anatase TiO2 nanowires investigated by field emission in a transmission electron microscope. J Vac Sci Technol B 30(1):011801CrossRefGoogle Scholar
  102. 102.
    Zheng H, Luo Z, Fang D, Phillips FR, Lagoudas DC (2012) Reversible phase transformations in a shape memory alloy In-T1 nanowires observed by in situ transmission electron microscopy. Mater Lett 70:109–112CrossRefGoogle Scholar
  103. 103.
    Inkson B, Dehm G, Wagner T (2002) In situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Mater 50(20):5033–5047CrossRefGoogle Scholar
  104. 104.
    Jung Y, Nam S, Agarwal R (2011) High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires. Nano Lett 11(3):1364–1368CrossRefGoogle Scholar
  105. 105.
    Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3):218–224CrossRefGoogle Scholar
  106. 106.
    Golberg D, Costa PMFJ, Lourie O, Mitome M, Bai X, Kurashima K, Zhi C, Tang C, Bando Y (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7(7):2146–2151CrossRefGoogle Scholar
  107. 107.
    Asthana A, Momeni K, Prasad A, Yap YK, Yassar RS (2011) In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22(26):265712CrossRefGoogle Scholar
  108. 108.
    Oshima Y (2012) Study of ballistic gold conductor using ultra-high-vacuum transmission electron microscopy. J Electron Microsc 61(3):133–144Google Scholar
  109. 109.
    Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301CrossRefGoogle Scholar
  110. 110.
    Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRefGoogle Scholar
  111. 111.
    Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6(12):2768–2772CrossRefGoogle Scholar
  112. 112.
    Wang CM, Xu W, Liu J, Choi DW, Arey B, Saraf LV, Zhang JG, Yang ZG, Thevuthasan S, Baer DR, Salmon N (2010) In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J Mater Res 25(8):1541–1547CrossRefGoogle Scholar
  113. 113.
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9(4):353–358CrossRefGoogle Scholar
  114. 114.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRefGoogle Scholar
  115. 115.
    Nam K, Kim D, Yoo P, Chiang C, Meethong N, Hammond P, Chiang Y, Belcher A (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888CrossRefGoogle Scholar
  116. 116.
    Wang C, Li X, Wang Z, Xu W, Liu J, Gao F, Kovarik L, Zhang J, Howe J, Burton DJ, Liu Z, Xiao X, Thevuthasan S, Baer DR (2012) In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett 12(3):1624–1632CrossRefGoogle Scholar
  117. 117.
    Liu Y, Hudak NS, Huber DL, Limmer SJ, Sullivan JP, Huang JY (2011) In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett 11(10):4188–4194CrossRefGoogle Scholar
  118. 118.
    Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42CrossRefGoogle Scholar
  119. 119.
    Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  120. 120.
    Peckys DB, Mazur P, Gould KL, de Jonge N (2011) Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100(10):2522–2529CrossRefGoogle Scholar
  121. 121.
    Peckys DB, de Jonge N (2011) Visualizing gold nanoparticle uptake in live cells with Liquid scanning transmission electron microscopy. Nano Lett 11(4):1733–1738CrossRefGoogle Scholar
  122. 122.
    Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194CrossRefGoogle Scholar
  123. 123.
    Chapman J, Scheinfein M (1999) Transmission electron microscopies of magnetic microstructures. J Magn Magn Mater 200(1–3):729–740CrossRefGoogle Scholar
  124. 124.
    Tanase M, Petford-Long AK (2009) In situ TEM observation of magnetic materials. Microsc Res Tech 72(3):187–196CrossRefGoogle Scholar
  125. 125.
    Basith MA, McVitie S, McGrouther D, Chapman JN, Weaver JMR (2011) Direct comparison of domain wall behavior in permalloy nanowires patterned by electron beam lithography and focused ion beam milling. J Appl Phys 110(8):083904CrossRefGoogle Scholar
  126. 126.
    Togawa Y, Kimura T, Harada K, Matsuda T, Tonomura A, Otani Y, Akashi T (2008) Current-excited magnetization reversal under in-plane magnetic field in a nanoscaled ferromagnetic wire. Appl Phys Lett 92(1):012505CrossRefGoogle Scholar
  127. 127.
    Nagai T, Yamada H, Konoto M, Arima T, Kawasaki M, Kimoto K, Matsui Y, Tokura Y (2008) Direct observation of the spin structures of vortex domain walls in ferromagnetic nanowires. Phys Rev B 78(18):180414CrossRefGoogle Scholar
  128. 128.
    O’Shea KJ, McVitie S, Chapman JN, Weaver JMR (2008) Direct observation of changes to domain wall structures in magnetic nanowires of varying width. Appl Phys Lett 93(20):202505CrossRefGoogle Scholar
  129. 129.
    Rodriguez LA, Magen C, Snoeck E, Serrano-Ramon L, Gatel C, Cordoba R, Martinez-Vecino E, Torres L, De Teresa JM, Ibarra MR (2013) Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl Phys Lett 102(2):022418CrossRefGoogle Scholar
  130. 130.
    Bruckner W, Thomas J, Hertel R, Schafer R, Schneider CM (2004) Magnetic domains in a textured Co nanowire. J Magn Magn Mater 283(1):82–88CrossRefGoogle Scholar
  131. 131.
    Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15(20):R841–R896CrossRefGoogle Scholar
  132. 132.
    Martin Y, Wickramsinghe H (1987) Magnetic imaging by force microscopy with 1000-Å resolution. Appl Phys Lett 50(20):1455–1457CrossRefGoogle Scholar
  133. 133.
    Nielsch K, Wehrspohn R, Barthel J, Kirschner J, Gosele U, Fischer S, Kronmuller H (2001) Hexagonally ordered 100 nm period nickel nanowire arrays. Appl Phys Lett 79(9):1360–1362CrossRefGoogle Scholar
  134. 134.
    Phatak C, Beleggia M, De Graef M (2008) Vector field electron tomography of magnetic materials: theoretical development. Ultramicroscopy 108(6):503–513CrossRefGoogle Scholar
  135. 135.
    Phatak C, Petford-Long AK, De Graef M (2010) Three-dimensional study of the vector potential of magnetic structures. Phys Rev Lett 104(25):253901CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryDickinson CollegeCarlisleUSA

Personalised recommendations