Study on Polymeric Nano-Composites by 3D-TEM and Related Techniques

  • Atsushi Kato
  • Yoshinobu Isono
  • Kazuya Nagata
  • Atsushi Asano
  • Yuko IkedaEmail author


There are strong demands for controlling the morphologies of nanofiller aggregate dispersion and polymer phase separation in order to improve the performance of nanofiller-filled rubber and polymer alloys and to impart new functions to materials. To accomplish these subjects, it is essential to visualize the morphologies three-dimensionally and to have techniques for analyzing and evaluating them. In this chapter, we describe the visualization of the nanofiller network structure and the nanofiller/rubber interaction layer in rubber and the lamella network structure in polyketone/polyamide polymer alloys by using a three-dimensional transmission electron microscopy/electron tomography technique, which is abbreviated as 3D-TEM in this study. The relationship between their morphological parameters and physical properties is also described.


Carbon Black Interaction Layer Ethylene Propylene Diene Monomer Volume Resistivity Rubber Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Emeritus Prof. S. Kohjiya of Kyoto University; Dr. S. Hikasa, Dr. H. Iwabuki, and Mr. J. Ootake of the Industrial Technology Center of Okayama Prefecture; Messrs R. Tsushi, Y. Kokubo, and Y. Kasahara of the Kyoto Institute of Technology; Dr. O. Dorozdova of Renishaw K. K.; Mrs. M. Nishioka, and Messrs T. Suda, H. Sawabe, J. Shimanuki, T. Hasegawa, T. Izumi, M. Mukai, and T. Gotou, N. Kojima, M. Hashimoto, Dr. M. Arao, Dr. Y. Takahashi, Misses. M. Gonda, and A. Isoda of NISSAN ARC, LTD. for their valuable cooperation and advice.


  1. 1.
    Wei L, Tang T, Huang BJ (2004) Synthesis and characterization of polyethylene/clay-silica nanocomposites: a montmorillonite/silica-hybrid-supported catalyst and in situ polymerization. Polym Sci Pt A 42:941–949CrossRefGoogle Scholar
  2. 2.
    Zhang Q, Archer L (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442CrossRefGoogle Scholar
  3. 3.
    Teinstein SS, Zhu A (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Archer L (2004) Optical polarimetry and mechanical rheometry of poly (ethylene oxide)-silica dispersions. Macromolecules 37:1928–1936CrossRefGoogle Scholar
  5. 5.
    Zhu Z, Thompson T, Wang SQ, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824CrossRefGoogle Scholar
  6. 6.
    Ozisik R, Zheng J, Dionne PJ, Picu CR, von Meerwall ED (2005) NMR relaxation and pulsed-gradient diffusion study of polyethylene nanocomposites. J Chem Phys 123:134901–134908CrossRefGoogle Scholar
  7. 7.
    Karásek L, Meissner B, Asai S, Sumita M (1996) Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers. Polymer J 28:121–126CrossRefGoogle Scholar
  8. 8.
    Yamaguchi K, Busfield JJC, Thomas AG (2003) Electrical and mechanical behavior of filled elastomers I. The effect of strain. J Polym Sci Phys Pt B 41:2079–2089CrossRefGoogle Scholar
  9. 9.
    Satoh Y, Suda K, Fujii S, Kawahara S, Isono Y, Kagami S (2007) Differential dynamic modulus of carbon black filled uncured SBR in single step large shearing deformation. J Soft Mater 3:29–40CrossRefGoogle Scholar
  10. 10.
    Treloar LRG (1958) The physics of rubber elasticity, 2nd edn. Clarendon, OxfordGoogle Scholar
  11. 11.
    Tobolsky AV (1960) Properties and structure of polymers. Wiley, New YorkGoogle Scholar
  12. 12.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Ikeda Y, Kato A, Shimanuki J, Kohjiya S (2004) Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy. Macromol Rapid Commun 25:1186–1190CrossRefGoogle Scholar
  14. 14.
    Ikeda Y (2005) Characterization of rubber nano-composites by using 3D-TEM/electron tomography. Sen’I Gakkai-shi 61:34–38 (in Japanese)Google Scholar
  15. 15.
    Kohjiya S, Kato A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46:4440–4446CrossRefGoogle Scholar
  16. 16.
    Kato A, Ikeda Y, Kohjiya S (2005) Three-dimensional observation of nano filler-filled natural rubber vulcanizates by 3D-transmission electron microscope (3D-TEM). Nippon Gomu Kyoukaishi 78(5):180–186 (in Japanese)CrossRefGoogle Scholar
  17. 17.
    Kohjiya S, Kato A, Suda T, Shimanuki J, Ikeda Y (2006) Visualisation of carbon black networks in rubbery matrix by 3D-TEM image. Polymer 47:3298–3301CrossRefGoogle Scholar
  18. 18.
    Kato A, Shimanuki J, Kohjiya S, Ikeda Y (2006) Three-dimensional morphology of carbon black in NR vulcanizates as revealed by 3D-TEM and dielectric measurements. Rubber Chem Technol 79:653–673CrossRefGoogle Scholar
  19. 19.
    Ikeda Y, Kato A, Shimanuki J, Kohjiya S, Tosaka M, Poompradub S, Toki S, Hsiao BS (2007) Nano-structural elucidation in carbon black loaded NR vulcanizate by 3D-TEM and in situ WAXD measurements. Rubber Chem Technol 80:251–264CrossRefGoogle Scholar
  20. 20.
    Kohjiya S, Kato A, Ikeda Y (2008) Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog Polym Sci 33:979–997CrossRefGoogle Scholar
  21. 21.
    Kohjiya S, Ikeda Y, Kato A (2008) Visualization of nano-filler dispersion and morphology in rubbery matrix by 3D-TEM. In: Bhowmick AK (ed) Current topics in elastomers research. CRC Press, Boca Raton, pp 543–551 (Chap 19)Google Scholar
  22. 22.
    Kato A, Ikeda Y, Kasahara Y, Shimanuki J, Suda T, Hasegawa T, Sawabe H, Kohjiya S (2008) Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J Opt Soc Am B 25:1602–1615CrossRefGoogle Scholar
  23. 23.
    Kato A, Ikeda Y, Kohjiya S (2012) Carbon black-filled natural rubber composites: physical chemistry and reinforcing mechanism. In: Thomas S, Joseph K, Malhotra SK, Goda K, Streekala MS (eds) Polymer composites, vol 1, Macro- and microcomposites. Wiley-VCH, Boscher, pp 515–543 (Chap 17)CrossRefGoogle Scholar
  24. 24.
    Kato A, Suda T, Ikeda Y, Kohjiya S (2011) Thermal destruction of carbon black network structure in natural rubber vulcanizate. J Appl Polym Sci 122:1300–1315CrossRefGoogle Scholar
  25. 25.
    Ghani AA, Eatha AI, Hassan AA (1985) Effect of carbon black and thermal aging on the conduction mechanism of natural and styrene butadiene rubbers. Angew Makromol Chem 129:1–9CrossRefGoogle Scholar
  26. 26.
    Satoh Y, Suda K, Fujii S, Kawahara S, Isono Y, Kagami S (2007) Novel characterization of filler network in rubber materials using differential dynamic modulus in large compression and recovery. J Soft Mater 3:14–20CrossRefGoogle Scholar
  27. 27.
    Gent AN (1992) Engineering with rubber. Hanser, MunichGoogle Scholar
  28. 28.
    Isono Y, Ferry JD (1984) Stress relaxation and differential dynamic modulus of carbon black filled styrene-butadiene. Rubber in large shearing deformations. Rubber Chem Technol 57:925–943CrossRefGoogle Scholar
  29. 29.
    Kato A, Isono Y (2013) Structural changes in the carbon black network in carbon-black-filled styrene-butadiene rubber samples cured with a two-step process. J Appl Polym Sci 128:2498–2507CrossRefGoogle Scholar
  30. 30.
    Piskin I, Tokita N (1972) Bound rubber in elastomers: analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. J Appl Polym Sci 16:473–492CrossRefGoogle Scholar
  31. 31.
    Nishi T (1972) Effect of solvent and carbon black species on the rubber-carbon black interactions studied by pulsed NMR. J Polym Sci Polym Phys 12:685–693CrossRefGoogle Scholar
  32. 32.
    Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM (2011) Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 44:4887–4900CrossRefGoogle Scholar
  33. 33.
    Smit PPA (1968) Glass transition in carbon black reinforced rubber. Rubber Chem Technol 41:1194–1202CrossRefGoogle Scholar
  34. 34.
    Nakajima K, Nishi T (2008) Recent developments in rubber research using atomic force microscopy. In: Bhomik AK (ed) Current topics in elastomers research. CRC Press, Boca Raton, pp 579–604 (Chap 21)Google Scholar
  35. 35.
    Kato A, Ikeda Y, Tsushi R, Kokubo Y, Kojima N (2013) A new approach to visualizing the carbon black/natural rubber interaction layer in carbon black-filled natural rubber vulcanizates and to elucidating the dependence of mechanical properties on quantitative parameters. Colloid Polym Sci 291:2101–2110CrossRefGoogle Scholar
  36. 36.
    Schelm S, Smith GB (2005) Tuning the surface-plasmon resonance in nanoparticles for glazing application. J Appl Phys 97(1–8):124314CrossRefGoogle Scholar
  37. 37.
    Naganuma T, Iba H, Kagawa Y (1999) Optothermal properties of glass particle-dispersed epoxy matrix composite. J Mater Sci Lett 18:1587–1589CrossRefGoogle Scholar
  38. 38.
    Kagawa Y, Iba H (2000) Optically transparent composites. Materia Jpn 39:137–140CrossRefGoogle Scholar
  39. 39.
    Charlesworth D (1981) Potential use for plastics in automobiles. Mater Des 2:149–156CrossRefGoogle Scholar
  40. 40.
    Waterman NA, Neal M (1981) Plastics in automobiles at SITEV ’81. Mater Des 2:250–259CrossRefGoogle Scholar
  41. 41.
    Chen G, Jiang A, Lin Z, Li Y (2004) Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis. Mater Des 25:579–585CrossRefGoogle Scholar
  42. 42.
    Edwards KL (2006) Materials for automobiles (2004) Elsevier 0-7506-5692-1 277 p. Mater Des 27:172CrossRefGoogle Scholar
  43. 43.
    Nagata N, Hikasa S, Hirotani M, Nitto Y, Watanabe T (2006) Structure and physical properties of polyketone/polyamide polymer alloy-2. Polym Prep Jpn 55:4286–4287Google Scholar
  44. 44.
    Kuriyama S (1999) Physical properties of plastic molding- for example, high toughness. Seikei Kakou 11:273–277 (in Japanese)Google Scholar
  45. 45.
    Mechanical engineer’s handbook. http// >Technology> Other. (Citation on 10 Nov 2012)
  46. 46.
    Polycarbonate – Tarflon. (Citation at 10 Nov 2012)
  47. 47.
    Kato A, Nishioka M, Takahashi Y, Suda T, Sawabe H, Isoda A, Drozdova O, Hasegawa T, Izumi T, Nagata K, Hikasa S, Iwabuki H, Asano A (2010) Phase separation and mechanical properties of polyketone/polyamide polymer alloys. J Appl Polym Sci 116:3056–3069CrossRefGoogle Scholar
  48. 48.
    Asano A, Nishioka M, Takahashi Y, Kato A, Hikasa S, Iwabuki H, Nagato K, Sato H, Hasegawa T, Sawabe H, Arao M, Suda T, Mukai M, Ishikawa D, Izumi T (2009) High impact properties of polyketone/polyamide-6 alloys induced by characteristic morphology and water absorption. Macromolecules 42:9506–9514CrossRefGoogle Scholar
  49. 49.
    Frank J (ed) (1992) Electron tomography: three-dimensional imaging with the transmission electron microscope. Plenum, New YorkGoogle Scholar
  50. 50.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefGoogle Scholar
  51. 51.
    Marco S, Bouder T, Messaoudi C, Rigaud JL (2004) Electron tomography of biological samples. Biochemistry (Moscow) 69(11):1219–1225CrossRefGoogle Scholar
  52. 52.
    Frank J (ed) (2006) Electron tomography methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, BerlinGoogle Scholar
  53. 53.
    Brian SK, David GH, Donald FB, Fishman EK (1996) Skeletal 3-D CT: advantages of volume rendering over surface rendering. Skeletal Radiol 25:207–214CrossRefGoogle Scholar
  54. 54.
    Kim KH, Kwon MJ, Kwon SM, Ra JB, Park HW (2002) Biomedical paper: fast surface and volume rendering based on shear-warp factorization for a surgical simulator. Comput Aided Surg 7:268–278CrossRefGoogle Scholar
  55. 55.
    The Japanese Society of Microscopy (2004) Feature articles: electron tomography. Microscopy 39(1):2–33Google Scholar
  56. 56.
    Johnson C, Hansen C (eds) (2005) The visualization handbook. Academic, San DiegoGoogle Scholar
  57. 57.
    Coran AY (2003) Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J Appl Polym Sci 87:24–30CrossRefGoogle Scholar
  58. 58.
    Tsuji M, Kohjiya S (1995) Structural studies on crystalline polymer solids by high-resolution electron microscopy. Prog Polym Sci 20(2):259–308CrossRefGoogle Scholar
  59. 59.
    Tsuji M, Fujita M, Kohjiya S (1997) On the correlation between modulus of polymer crystals and resistance against electron-beam irradiation. Nihon Reorogi Gakkaishi 25:193–194 (in Japanese)CrossRefGoogle Scholar
  60. 60.
    Detlev S, Malte W, Hans-Christian H (2005) Amira: a highly interactive system for visual data analysis. In: Hansen CD, Johnson CR (eds) The visualization handbook. Elsevier, Amsterdam (Chap 38)Google Scholar
  61. 61.
    Kohjiya S, Kato A, Shimanuki J, Hasegawa T, Ikeda Y (2005) Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. J Mater Sci 40:2553–2555CrossRefGoogle Scholar
  62. 62.
    The Carbon Black Association, Japan (1995) Handbook of carbon black. The Carbon Black Association, Tokyo, p 66 (in Japanese)Google Scholar
  63. 63.
    Nihon Gosei Gomu Co., Ltd (ed) (1985) JSR handbook. JSR, Tokyo, p 70 (in Japanese)Google Scholar
  64. 64.
    Satoh Y, Suda K, Fujii S, Kawahara S, Isono Y, Kagami S (2007) Novel characterization of filler network in rubber materials using differential dynamic modulus in large compression and recovery. J Soft Mater 3:14–20CrossRefGoogle Scholar
  65. 65.
    Kohjiya S, Kato A (2005) Visualization of nanostructure in soft materials by 3D-TEM. Kobunshi Ronbunshu 62:467–475 (in Japanese)CrossRefGoogle Scholar
  66. 66.
    Kato A, Kohjiya S, Ikeda Y (2006) Three-dimensional electron transmission microscopy. Koubunshi 55:616–619 (in Japanese)CrossRefGoogle Scholar
  67. 67.
    Hirata M (2000) A fractal approach to the mixing-microstructure-property relationship for rubber compounds. J Appl Polym Sci 78:1555–1565CrossRefGoogle Scholar
  68. 68.
    Jäger KM, McQueen DH (2001) Fractal agglomerates and electrical conductivity in carbon black polymer. Polymer 42:9575–9581CrossRefGoogle Scholar
  69. 69.
    Usui MH, Ishizuki M, Shige I, Suzuki H (2003) Rheological characteristics of non-spherical suspensions. Kor-Aust Rheol J 15(1):19–25Google Scholar
  70. 70.
    Viswanathan R, Heaney MB (2005) Direct imaging of the percolation network in a three-dimensional disordered conductor-insulator composite. Phys Rev Lett 75:4433–4436CrossRefGoogle Scholar
  71. 71.
    Fukahori Y (2008) Mechanism of the carbon black reinforcement of rubbers. In: Bhomik AK (ed) Current topics in elastomers research. CRC Press, Boca Raton, pp 517–539 (Chap 18)Google Scholar
  72. 72.
    Medalia AI (1972) Effective degree of immobilization of rubber occluded within carbon black aggregates. Rubber Chem Technol 45:1171–1194CrossRefGoogle Scholar
  73. 73.
    Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43:2235–2241CrossRefGoogle Scholar
  74. 74.
    Singh R, Mattoo A, Saigal A (2006) Optimizing the design and impact behavior of a polymeric enclosure. Mater Des 27:955–967CrossRefGoogle Scholar
  75. 75.
    Miyasaka K (ed) (1992) Dictionary of plastics. Asakura Shoten, Tokyo (in Japanese)Google Scholar
  76. 76.
    Kato A, Kohjiya S, Ikeda Y (2007) Nanostructure in traditional composites of natural rubber and reinforcing silica. Rubber Chem Technol 80:690–700CrossRefGoogle Scholar
  77. 77.
    Heinrich G, Kluppel M (2004) The role of polymer-filler-interphase in reinforcement of elastomers. Kautsch Gummi Kunstst 57:452–454Google Scholar
  78. 78.
    Song M, Ansarifar A, Nijhawan R, Nanapoolsin T (2003) Reinforcing effect of silica and silane fillers on the properties of some natural rubber vulcanizates. Rubber Chem Technol 76:1290–1310CrossRefGoogle Scholar
  79. 79.
    Kohjiya S, Yamashita S (1992) Moisture cure and related processes of synthetic and natural rubber. J Appl Polym Sci Appl Polym Symp 50:213–221CrossRefGoogle Scholar
  80. 80.
    Zhang W, Leonov AI (2001) IGC study of filler-filler and filler-rubber interaction in silica-filled compounds. J Appl Polym Sci 81(10):2517–2530CrossRefGoogle Scholar
  81. 81.
    He N, Ge S, Yan G, Hu C, Gu M (2004) Investigation on the mechanism of the photoluminescence of MCM-41. Mater Res Bull 39:1931–1937CrossRefGoogle Scholar
  82. 82.
    Kaijou R, Ito M, Ono S (2004) Filler gel and rubber gel in silica-filled rubber systems. Nippon Gomu Kyoukaishi 77:375–381 (in Japanese)CrossRefGoogle Scholar
  83. 83.
    Yuan P, Yang D, Lin Z, He H, Wen X, Wang L, Den F (2006) Influences of pretreatment temperature on the surface silylation of diatomaceous amorphous silica with trimethylchlorosilane. J Non-Cryst Solids 352:3762–3771CrossRefGoogle Scholar
  84. 84.
    Kandidov VP, Milisin VO, Bykov AV, Priezzhev AV (2006) Application of corpuscular and wave Monte-Carlo method in optics of dispersive media. Quantum Electron 36:1003–1008CrossRefGoogle Scholar
  85. 85.
    Feng J, Chan CM (1997) Miscibility and properties of alternating ethylene-Tetrafluoroethylene copolymers and poly (methyl methacrylate) blends. Polymer 38:6371–6378CrossRefGoogle Scholar
  86. 86.
    Utracki LA (1989) Polymer alloys and blends; thermodynamics and rheology. Carl Hanser, MünichGoogle Scholar
  87. 87.
    Asano A, Takegoshi K (1998) Polymer blends and miscibility. In: Ando I, Asakura T (eds) Solid state NMR of polymers. Elsevier Science B.V, Amsterdam, pp 351–414 (Chap 10)CrossRefGoogle Scholar
  88. 88.
    Lagaron JM, Vickers ME, Powell AK, Davidson NS (2000) Crystalline structure in aliphatic polyketones. Polymer 41:3011–3017CrossRefGoogle Scholar
  89. 89.
    Lagaron JM, Vickers ME, Powell AK, Bonner JG (2002) On the effect of the nature of the side chain over the crystalline structure in aliphatic polyketones. Polymer 43:1877–1886CrossRefGoogle Scholar
  90. 90.
    Matsuoka S (1992) Relaxation phenomena in polymers. Carl Hanser, MünichGoogle Scholar
  91. 91.
    Takahashi Y, Nishioka M, Sawabe H, Sato H, Kato A, Nagata K, Iwabuki H, Hikasa S, Asano A (2009) Nano structure of polyketon/polyamide polymer alloy. Koubunshi Ronbunshu 66:577–584 (in Japanese)CrossRefGoogle Scholar
  92. 92.
    Smith AP, Ade H, Smith SD, Koch CC, Spontak RJ (2001) Anomalous phase inversion in polymer blends prepared by cryogenic mechanical allying. Macromolecules 34:1536–1538CrossRefGoogle Scholar
  93. 93.
    Chuai CZ, Almdal K, Lyngaae-Jorgensen J (2003) Phase continuity and inversion in polystyrene/poly(methyl methacrylate) blends. Polymer 44:481–493CrossRefGoogle Scholar
  94. 94.
    Nishioka M, Takahshi Y, Kato A, Sawabe H, Sato H, Nagata K, Hikasa S, Iwabuki H, Asano A (2009) Influence of water absorption on high-impact properties of polyketon/polyamide polymer alloys. Koubunshi Ronbunshu 66:570–576 (in Japanese)CrossRefGoogle Scholar
  95. 95.
    Inoue T, Ougizawa T, Society of Polymer Science, Japan (1995) Fundamentals of polymer experiments and analysis of molecular characteristics. In: New polymer experimentology 1. Kyoritsu Shuppan, Tokyo (in Japanese)Google Scholar
  96. 96.
    Broseta D, Fredrickson GH, Helfand E, Leiber L (1990) Molecular weight and polydispersity effects at polymer-polymer interfaces. Macromolecules 23:132–139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Atsushi Kato
    • 1
  • Yoshinobu Isono
    • 2
  • Kazuya Nagata
    • 3
  • Atsushi Asano
    • 4
  • Yuko Ikeda
    • 5
    Email author
  1. 1.Department of Material AnalysisNISSAN ARC, LTDYokosukaJapan
  2. 2.Department of Materials Science and TechnologyNagaoka University of TechnologyNagaokaJapan
  3. 3.Department of Advanced Technology DevelopmentLaboratory of Plastics, Asahikasei Chemicals CorporationKawasaki-ku KawasakiJapan
  4. 4.Department of Applied ChemistryNational Defense AcademyYokosukaJapan
  5. 5.Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations