Abstract
Transmission electron microscopy provides a wide range of methods to study the morphology, the crystal structure and perfection, the chemistry, and the magnetic and the electronic properties of the matter at the highest spatial resolution. In this chapter some TEM approaches to study nanostructured semiconductors will be described with the help of practical examples of their application to different kinds of material systems.
Keywords
- HRTEM Image
- Scanning Transmission Electron Microscopy
- Convergent Beam Electron Diffraction
- Scanning Transmission Electron Microscopy Image
- Primary Electron Beam
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



























References
Abbe E (1874) A contribution to the theory of the microscope and the nature of microscopic vision. Proc Bristol Nat Soc 1:200–261
Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals, 2nd edn. R. E. Krieger, Malabar
Herman A, Sitter H (1996) Molecular beam epitaxy: fundamental and current status. Springer series in materials science, vol 7. Springer-Verlag Berlin and Heidelberg GmbH
Scheel HJ, Capper P (2008) Crystal growth technology: from fundamentals and simulation to large scale production. Wiley-VCH, Weinheim
Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793. doi:PMID 10031924
Obst M, Gasser P, Mavrocordatos D, Dittrich M (2005) TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am Mineral 90:1270–1277
Spence JCH (1988) Experimental high-resolution electron microscopy, 2nd edn. Oxford University Press, New York
Stadelmann PA (1987) EMS – a software package for electron diffraction analysis and HREM image simulations in material science. Ultramicroscopy 21:131–145
Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum, New York
Cowley JM (1990) Diffraction physics, 4th edn. North Holland Elsevier Science, Amsterdam
Pennycook SJ, Nellist PD (1999) Impact of electron microscopy on materials research. Kluwer, Dordrecht
Pogany AP, Turner PS (1968) Reciprocity in electron diffraction and microscopy. Acta Cryst A24:103–109
Voyles PM, Muller DA, Kirland EJ (2004) Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10:291–300
Carlino E, Grillo V (2005) Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments. Phys Rev B 71:235303
Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47:395
Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78:1
Rose HH (2008) Optics of high-performance electron microscopes. Sci Technol Adv Mater 9:014107–0141037
Nellist PD, Chisholm MF, Dellby N, Krivanek OL, Murfitt MF, Szilagyi ZS, Lupini AR, Borisevich A, Sides WH Jr, Pennycook SJ (2004) Direct sub-Angström imaging of a crystal lattice. Science 305:1741
Schramm SM, van der Molen SJ, Tromp RM (2012) Intrinsic instability of aberration-corrected electron microscopes. Phys Rev Lett 109:163901
Miedema MAO, van den Bos A, Buist A (1994) Experimental design of the exit wave reconstruction from a transmission electron microscope defocus series. IEEE Trans Inst Meas 43:181–186
Huang WJ, Zuo JM, Jiang B, Kwon KW, Shim M (2009) Sub-Ångström-resolution diffractive imaging of single nanocrystals. Nature Phys 5:129–133
De Caro L, Carlino E, Caputo G, Cozzoli PD, Giannini C (2010) Electron diffractive imaging of oxygen atoms in nanocrystals at sub-angstrom resolution. Nature Nanotech 5:360–365
De Caro L, Carlino E, Alessio Vittoria F, Siliqi D, Giannini C (2012) Keyhole electron diffractive imaging (KEDI). Acta Cryst A681-16
Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for material science, 2nd edn. Springer Science+Business Media, New York
Zuo JM (2000) Detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49:245–268
Reimer L (1984) Transmission electron microscopy: physics of image formation and microanalysis. Springer-Verlag Berlin Heidelberg, New York, Tokio
Loretto MH (1984) Electron beam analysis of materials. Chapman and Hall, London
Buxton BF, Eades JA, Steeds JW, Rackam GM (1976) Philos Trans Royal Soc Lond A 281:171
Steeds JW, Vincent R (1983) J Appl Cryst 16:317
Tanaka M, Saito R, Ueno K, Harada Y (1980) J Electron Microsc 29:408
Deblasi C, Mancini AM, Manno D, Rizzo A, Carlino E (1991) Convergent beam electron diffraction analysis of GaSe crystals grown from the melt by different doping elements. Il Nuovo Cimento 13D(2):233–246
Armigliato A, Balboni R, Corticelli F, Frabboni S (1995) Influence of experimental parameters on the determination of tetragonal distortion in heterostructures by LACBEDMicrosc. Microanal Microstruct 6(5–6):449–456
Matsuhata H, Gjonnes J (2002) Bloch wave degeneracies and critical voltage effect in CBED patterns. Microsc Microanal 8(S02):92–93
Morniroli J-P, Cherns D (1996) Analysis of grain boundary dislocations by large angle convergent beam electron diffraction. Ultramicroscopy 62:53–63
Goldstein JI, Williams DB, Cliff G (1989) In: Joy DC, Romigjr AD, Goldstein JI (eds) Quantitative X-ray analysis in principles of analytical electron microscopy, 2nd edn. Plenum Press, New York
Yamamoto N (1990) Characterization of crystal defects by cathodoluminescence detection system combined with TEM. Trans Jpn Inst Met 31:659–665
Wang JN, Steeds JW, Hopkinson M (1993) Microstructure and cathodoluminescence of MBE-grown (001) InGaP/GaAs strained-layer heterostructures. Semicond Sci Technol 8:502–508
Egerton RF (1989) Electron energy loss spectrometry in the electron microscope. Plenum, New York
Yamamoto Y, Tatsumiand K, Muto S (2007) Site-selective electronic structure of aluminum in oxide ceramics obtained by TEM-EELS analysis using the electron standing-wave method. Mater Trans 48(10):2590–2594
Rafferty B, Brown LM (1998) Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys Rev B 58:10326
Batson PE, Kavanah KL, Woodall JM, Mayer JM (1986) Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys Rev Lett 57:2719
Lazar S, Botton GA, Tichelaar FD, Zandbergen HW (2003) Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96:535
Schattschneider P, Rubino S, Hébert C, Rusz J, Kune J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Experimental proof of circular magnetic dichroism in the electron microscope. Nature 441:486–488
Rusz J, Eriksson O, Novak P, Oppeneer PM (2007) Sum-rules for electron energy-loss near-edge spectra. Phys Rev B 76:060408. doi:10.1103/PhysRevB.76.060408
Schattschneider P, Hèbert C, Rubino S, Stöger-Pollach M, Rusz J, Novak P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108:433–438. doi:10.1016/j.ultramic.2007.07.002
Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4):263–270
Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586
Mkhoyan KA, Kirkland EJ, Silcox J, Alldredge ES (2004) Atomic level scanning transmission electron microscopy characterization of GaN/AlN quantum wells. J Appl Phys 96(1):738–746
Varela M, Gazquez J, Pennycook SJ (2012) STEM-EELS imaging of complex oxides and interfaces. MRS Bull 37(01):29–35
Van Tendeloo G, Bals S, Van Aert S, Verbeeck J, Van Dyck D (2012) Advanced electron microscopy for advanced materials. Adv Mater 24:5655–5675
Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865
Ciancio R, Carlino E, Rossi G, Aruta C, Scotti di Uccio U, Vittadini A, Selloni A (2012) Magnéli- like phases in epitaxial anatase TiO2 thin films. Phys Rev B 86:104110
Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574. doi:10.1038/nature08879
Malajovich I, Berry JJ, Samarth N, Awschalom DD (2001) Persistant sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411:770
Wolf SA, Awschalom D, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488
Grabs P, Richter G, Fiederling R, Becker CR, Ossau W, Schmidt G, Molenkamp LW, Weigand W, Umbach E, Sedova IV, Ivanov SV (2002) Molecular-beam epitaxy of (Cd,Mn)Se on InAs, a promising material system for spintronics. Appl Phys Lett 80:3766, and references therein
Schulz O, Strassburg A, Rissoni T, Rodt S, Reissmann L, Pohl UW, Bimberg D, Klude M, Hommel D, Itoh S, Nakano K, Ishibashi A (2002) Operation and catastrophic optical degradation of II–VI laser diodes at output powers larger than 1 W. Phys Stat Sol B 229:943–948, and references therein
Guha S, DePuydt JM, Qiu J, Höfler GE, Haase MA, Wu BJ, Cheng H (1993) Role of stacking faults as misfit dislocation sources and nonradiative recombination centers in II‐VI heterostructures and devices. Appl Phys Lett 63:3023
Hua GC, Otsuka N, Grillo DC, Fan Y, Han J, Ringle MD, Gunshor RL, Hovinen M, Nurmikko AV (1994) Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue‐green laser diode. Appl Phys Lett 65:1331
Kuo LH, Salamanca-Riba L, Wu BJ, Höfler BJ, DePuydt JM, Cheng H (1995) Dependence of the density and type of stacking faults on the surface treatment of the substrate and growth mode in ZnSxSe1 − x/ZnSe buffer layer/GaAs heterostructures. Appl Phys Lett 67:3298
Petruzzello J, Haberern KW, Herko SP, Marshall T, Gaines JM, Guha S, U’Ren S, Haugen JM (1996) Characterization of low defect density blue-green lasers. J Cryst Growth 159:573
Bonard J-M, Ganiere J-D, Heun S, Paggel JJ, Rubini S, Sorba L, Franciosi A (1997) Stacking faults in pseudomorphic ZnSe-GaAs and lattice-matched ZnSe-In0.04 Ga0.96 As layers. Phil Mag Lett 75:219
Wang N, Fung KK, Sou IK (2000) Direct observation of stacking fault nucleation in the early stage of ZnSe/GaAs pseudomorphic epitaxial layer growth. Appl Phys Lett 77:2846
Jackson AG (1991) Handbook of crystallography. Springer, New York
Amelinckx S (1992) Kinematical and dynamical diffraction theory in electron microscopy in materials science. In: Merli PG, Vittori Antisari M (eds) World Scientific - Singapore-New Jersey-London-Hong Kong
Colli A, Carlino E, Pelucchi E, Grillo V, Franciosi A (2004) Local interface composition and native stacking fault density in ZnSe/GaAs (001) heterostructures. Jour Appl Phys 96(5):2592–2602
Thomas G (1975) In: Valdre U, Ruedl E (eds) Introduction to transmission electron microscopy in electron microscopy in materials science. Commission of the European Communities, Directorate General, Luxembourg, EUR 5515e
Colli A, Pelucchi E, Franciosi A (2003) Controlling the native stacking fault density in II-VI/III-V heterostructures. Appl Phys Lett 83:81, and references therein
Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111
Li D, Gonsalves JM, Otsuka N, Qiu J, Kobayashi M, Gunshor RL (1990) Structure of the ZnSe/GaAs heteroepitaxial interface. Appl Phys Lett 57:449
Sun Y, Scott Thompson E, Nishida T (2010) Strain effect in semiconductors: theory and applications. Springer New York Dordrecht Heidelberg, London. ISBN 978-1-4419-0551-2
Spessot A, Frabboni S, Balboni R, Armigliato A (2007) Method for determination of the displacement field in patterned nanostructures by TEM/CBED analysis of split high-order Laue zone line profiles. J Microsc 226:140–155
Jacob D, Androussi Y, Lefebvre A (2001) LACBED measurement of the chemical composition of a thin InxGa1-x As layer buried in a GaAs matrix. Ultramicroscopy 89:299–303
Janssens KGF, Van der Biest O, Vanhellemont J, Maes HE (1997) Assessment of the quantitative characterization of localized strain by using electron diffraction contrast imaging. Ultramicroscopy 69:151–167
Miller PD, Liu CP, Murray Gibson J (2000) TEM measurement of strain in coherent quantum heterostructures. Ultramicroscopy 84:225–233
Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 4:131–146
Hytch MJ, Plamann T (2001) Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87:199–212
Niermann T, Park JB, Lehmann M (2011) Local estimation of lattice constants in HRTEM images. Ultramicroscopy 111:1083–1092
Liu CP, Preston AR, Boothroyd CB, Humphreys CJ (1999) Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images. J Microsc 194(1):171–182
De Caro L, Giuffrida A, Carlino E, Tapfer L (1997) Effect of the elastic stress relaxation on the hrtem image contrast of strained heterostructures. Acta Cryst A 53:168
Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744
Ojo W, Xu S, Delpech F, Nayral C, Chaudret B (2012) Room-temperature synthesis of air-stable and size-tunable luminescent ZnS-coated Cd3P2 nanocrystals with high quantum yields. Angew Chem Int Ed 51:738–741
KantaHaldar K, Sinha G, Lahtinen J, Patra A (2012) Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Appl Mater Interfaces 4:6266–6272
Kim I, Haverinen HM, Wang Z, Madakuni S, Kim Y, Li J, Jabbour GE (2009) Efficient organic solar cells based on planar metallophthalocyanines. Chem Mater 21:4256–4260
Mirkovic T, Rossouw D, Botton GA, Gregory D (2011) Scholes broken band alignment in EuS-CdS nanoheterostructures. Chem Mater 23:181–187
Taraci JL, Hytch MJ, Clement T, Peralta P, McCartney MR, Drucker J, Picraux ST (2005) Strain mapping in nanowires. Nanotechnology 16:2365–2371
Buonsanti R, Grillo V, Carlino E, Giannini C, Gozzo F, Garcia-Hernandez M, Garcia MA, Cingolani R, Cozzoli PD (2010) Architectural control of seeded grown iron oxide/TiO2 nanorod heterostructures: the role of seeds in topology selection. J Am Chem Soc 132(7):2437–2464
Hu GB, Peng L-M, Yu QF, Lu HQ (2000) Automated identification of symmetry in CBED patterns: a genetic approach. Ultramicroscopy 84:47–56
Tanaka M, Saito R, Sekii H (1983) Point-group determination by convergent-beam electron diffraction. Acta Cryst A 39:357
Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102
Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427
Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3(7):961–963
Cui Y, Banin U, Bjork MT, Alivisatos AP (2005) Electrical transport through a single nanoscale semiconductor branch point. Nano Lett 5(7):1519–1523
Carbone L, Kudera S, Carlino E, Parak WJ, Cingolani R, Manna L (2006) Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128(3):748–755
Yan YF, Al-Jassim MM, Chisholm MF, Boatner LA, Pennycook SJ, Oxley M (2005) [1100]/[1102] twin boundaries in wurtzite ZnO and group-III-nitrides. Phys ReV B 71(4):041309
Hawkes PW (2009) Aberration correction past and present. Phil Trans R Soc A 28 367(1903):3637–3664
Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Muller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Schmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008) Atomic structure of core-shell precipitates in Al-Li-Sc-Zr alloys studied by analytical and aberration-corrected TEM/STEM. Microsc Microan 14:469
Meyer JC, Kisielowski C, Erni R, Rossel MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582
Gabor D (1948) A new microscopic principle. Nature 161:777
Fan H, Zhong ZZ, Zheng C, Li F (1985) Image processing in high-resolution electron microscopy using direct method. Acta Crystallogr A41:163–165
Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769
Fienup JR (1987) Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J Opt Soc Am A4:118–127
Abbey B, Nugent KA, Williams GJ, Clark JN, Peele AG, Pfeifer MA, De Jonge M, McNulty I (2008) Keyhole coherent diffractive imaging. Nature 4:394–398
Shannon (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):1021
Sayre D (1952) Some implications of a theorem due to Shannon. Acta Cryst 5:843
Muller DA, Silcox J (1995) Delocalization in inelastic scattering. Ultramicroscopy 59:195–213
Howie A (1979) Image-contrast and localized signal selection technique. J Microsc Oxford 117:11–23
Bourdillon AJ, Self PG, Stobbs WM (1981) Crystallographic orientation effects in energy dispersive X-ray analysis. Philos Mag A 44:1335–1350
Kohl H, Rose H (1985) Theory of image formation by inelastically scattered electrons in the electron microscope. Adv Electron Electron Phys 65:173
Messiah A (1999) Quantum mechanics. Dover, North-Holland Publishing Company, Amsterdam
Lupini AR, Pennycook SJ (2003) Localization in elastic and inelastic scattering. Ultramicroscopy 96:313–322
Pennycook SJ (2002) Structure determination through Z-contrast microscopy. Adv Imaging Electron Phys 123:173–206, P. G. Merli, G. Calestani, and M. Vittori-Antisari, Eds
Stöhr J, Wu Y, Dunham D, Tonner BP (1993) Element-specific magnetic microscopy with circularly polarized X-rays. Science 259:658–661
Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70(5):694–697
Schattschneider P, Ennena I, Stoger-Pollach M, Verbeeck J, Mauchamp V, Jaouen M (2010) Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110:1038–1041
Lidbaum H, Rusz J, Rubino S, Liebig A, Hjorvarsson B, Oppeneer PM, Eriksson O, Leifer K (2010) Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 110:1380–1389
Verbeeck J, Tian H, Schattschneider P (2010) Production and application of electron vortex beams. Nature 467:301–303
http://l-esperimento-piu-bello-della-fisica.bo.imm.cnr.it/english/index.html
http://www.ccmr.cornell.edu/igert/modular/docs/4_Chemical_Identification_at_Nanoscale.pdf
Krivanek OL, Dellby N. Murfitt MF (2011) Aberration-corrected scanning transmission electron microscopy of semiconductors. J Phys: Conf Ser 326:012005. Seventeenth international conference on microscopy of semiconducting materials, 2011. IOP Publishing. doi:10.1088/1742-6596/326/1/012005
Acknowledgments
I would like to thank Alfonso Franciosi for the many inspiring discussions, Regina Ciancio for the careful reading of the paper and Ezio Cociancich for the help in the realization of some of the figures of the chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carlino, E. (2014). TEM for Characterization of Semiconductor Nanomaterials. In: Kumar, C. (eds) Transmission Electron Microscopy Characterization of Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38934-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-38934-4_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38933-7
Online ISBN: 978-3-642-38934-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)