TEM for Characterization of Semiconductor Nanomaterials

  • Elvio CarlinoEmail author


Transmission electron microscopy provides a wide range of methods to study the morphology, the crystal structure and perfection, the chemistry, and the magnetic and the electronic properties of the matter at the highest spatial resolution. In this chapter some TEM approaches to study nanostructured semiconductors will be described with the help of practical examples of their application to different kinds of material systems.


HRTEM Image Scanning Transmission Electron Microscopy Convergent Beam Electron Diffraction Scanning Transmission Electron Microscopy Image Primary Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Alfonso Franciosi for the many inspiring discussions, Regina Ciancio for the careful reading of the paper and Ezio Cociancich for the help in the realization of some of the figures of the chapter.


  1. 1.
    Abbe E (1874) A contribution to the theory of the microscope and the nature of microscopic vision. Proc Bristol Nat Soc 1:200–261Google Scholar
  2. 2.
    Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals, 2nd edn. R. E. Krieger, MalabarGoogle Scholar
  3. 3.
    Herman A, Sitter H (1996) Molecular beam epitaxy: fundamental and current status. Springer series in materials science, vol 7. Springer-Verlag Berlin and Heidelberg GmbHGoogle Scholar
  4. 4.
    Scheel HJ, Capper P (2008) Crystal growth technology: from fundamentals and simulation to large scale production. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  5. 5.
    Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793. doi:PMID 10031924CrossRefGoogle Scholar
  6. 6.
    Obst M, Gasser P, Mavrocordatos D, Dittrich M (2005) TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am Mineral 90:1270–1277CrossRefGoogle Scholar
  7. 7.
    Spence JCH (1988) Experimental high-resolution electron microscopy, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Stadelmann PA (1987) EMS – a software package for electron diffraction analysis and HREM image simulations in material science. Ultramicroscopy 21:131–145CrossRefGoogle Scholar
  9. 9.
    Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum, New YorkCrossRefGoogle Scholar
  10. 10.
    Cowley JM (1990) Diffraction physics, 4th edn. North Holland Elsevier Science, AmsterdamGoogle Scholar
  11. 11.
    Pennycook SJ, Nellist PD (1999) Impact of electron microscopy on materials research. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Pogany AP, Turner PS (1968) Reciprocity in electron diffraction and microscopy. Acta Cryst A24:103–109CrossRefGoogle Scholar
  13. 13.
    Voyles PM, Muller DA, Kirland EJ (2004) Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10:291–300CrossRefGoogle Scholar
  14. 14.
    Carlino E, Grillo V (2005) Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments. Phys Rev B 71:235303CrossRefGoogle Scholar
  15. 15.
    Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47:395CrossRefGoogle Scholar
  16. 16.
    Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78:1CrossRefGoogle Scholar
  17. 17.
    Rose HH (2008) Optics of high-performance electron microscopes. Sci Technol Adv Mater 9:014107–0141037CrossRefGoogle Scholar
  18. 18.
    Nellist PD, Chisholm MF, Dellby N, Krivanek OL, Murfitt MF, Szilagyi ZS, Lupini AR, Borisevich A, Sides WH Jr, Pennycook SJ (2004) Direct sub-Angström imaging of a crystal lattice. Science 305:1741CrossRefGoogle Scholar
  19. 19.
    Schramm SM, van der Molen SJ, Tromp RM (2012) Intrinsic instability of aberration-corrected electron microscopes. Phys Rev Lett 109:163901CrossRefGoogle Scholar
  20. 20.
    Miedema MAO, van den Bos A, Buist A (1994) Experimental design of the exit wave reconstruction from a transmission electron microscope defocus series. IEEE Trans Inst Meas 43:181–186CrossRefGoogle Scholar
  21. 21.
    Huang WJ, Zuo JM, Jiang B, Kwon KW, Shim M (2009) Sub-Ångström-resolution diffractive imaging of single nanocrystals. Nature Phys 5:129–133CrossRefGoogle Scholar
  22. 22.
    De Caro L, Carlino E, Caputo G, Cozzoli PD, Giannini C (2010) Electron diffractive imaging of oxygen atoms in nanocrystals at sub-angstrom resolution. Nature Nanotech 5:360–365CrossRefGoogle Scholar
  23. 23.
    De Caro L, Carlino E, Alessio Vittoria F, Siliqi D, Giannini C (2012) Keyhole electron diffractive imaging (KEDI). Acta Cryst A681-16Google Scholar
  24. 24.
    Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for material science, 2nd edn. Springer Science+Business Media, New YorkCrossRefGoogle Scholar
  25. 25.
    Zuo JM (2000) Detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49:245–268CrossRefGoogle Scholar
  26. 26.
    Reimer L (1984) Transmission electron microscopy: physics of image formation and microanalysis. Springer-Verlag Berlin Heidelberg, New York, TokioCrossRefGoogle Scholar
  27. 27.
    Loretto MH (1984) Electron beam analysis of materials. Chapman and Hall, LondonCrossRefGoogle Scholar
  28. 28.
    Buxton BF, Eades JA, Steeds JW, Rackam GM (1976) Philos Trans Royal Soc Lond A 281:171CrossRefGoogle Scholar
  29. 29.
    Steeds JW, Vincent R (1983) J Appl Cryst 16:317CrossRefGoogle Scholar
  30. 30.
    Tanaka M, Saito R, Ueno K, Harada Y (1980) J Electron Microsc 29:408Google Scholar
  31. 31.
    Deblasi C, Mancini AM, Manno D, Rizzo A, Carlino E (1991) Convergent beam electron diffraction analysis of GaSe crystals grown from the melt by different doping elements. Il Nuovo Cimento 13D(2):233–246CrossRefGoogle Scholar
  32. 32.
    Armigliato A, Balboni R, Corticelli F, Frabboni S (1995) Influence of experimental parameters on the determination of tetragonal distortion in heterostructures by LACBEDMicrosc. Microanal Microstruct 6(5–6):449–456CrossRefGoogle Scholar
  33. 33.
    Matsuhata H, Gjonnes J (2002) Bloch wave degeneracies and critical voltage effect in CBED patterns. Microsc Microanal 8(S02):92–93Google Scholar
  34. 34.
    Morniroli J-P, Cherns D (1996) Analysis of grain boundary dislocations by large angle convergent beam electron diffraction. Ultramicroscopy 62:53–63CrossRefGoogle Scholar
  35. 35.
    Goldstein JI, Williams DB, Cliff G (1989) In: Joy DC, Romigjr AD, Goldstein JI (eds) Quantitative X-ray analysis in principles of analytical electron microscopy, 2nd edn. Plenum Press, New YorkGoogle Scholar
  36. 36.
    Yamamoto N (1990) Characterization of crystal defects by cathodoluminescence detection system combined with TEM. Trans Jpn Inst Met 31:659–665Google Scholar
  37. 37.
    Wang JN, Steeds JW, Hopkinson M (1993) Microstructure and cathodoluminescence of MBE-grown (001) InGaP/GaAs strained-layer heterostructures. Semicond Sci Technol 8:502–508CrossRefGoogle Scholar
  38. 38.
    Egerton RF (1989) Electron energy loss spectrometry in the electron microscope. Plenum, New YorkGoogle Scholar
  39. 39.
    Yamamoto Y, Tatsumiand K, Muto S (2007) Site-selective electronic structure of aluminum in oxide ceramics obtained by TEM-EELS analysis using the electron standing-wave method. Mater Trans 48(10):2590–2594CrossRefGoogle Scholar
  40. 40.
    Rafferty B, Brown LM (1998) Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys Rev B 58:10326CrossRefGoogle Scholar
  41. 41.
    Batson PE, Kavanah KL, Woodall JM, Mayer JM (1986) Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys Rev Lett 57:2719CrossRefGoogle Scholar
  42. 42.
    Lazar S, Botton GA, Tichelaar FD, Zandbergen HW (2003) Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96:535CrossRefGoogle Scholar
  43. 43.
    Schattschneider P, Rubino S, Hébert C, Rusz J, Kune J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Experimental proof of circular magnetic dichroism in the electron microscope. Nature 441:486–488CrossRefGoogle Scholar
  44. 44.
    Rusz J, Eriksson O, Novak P, Oppeneer PM (2007) Sum-rules for electron energy-loss near-edge spectra. Phys Rev B 76:060408. doi:10.1103/PhysRevB.76.060408CrossRefGoogle Scholar
  45. 45.
    Schattschneider P, Hèbert C, Rubino S, Stöger-Pollach M, Rusz J, Novak P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108:433–438. doi:10.1016/j.ultramic.2007.07.002CrossRefGoogle Scholar
  46. 46.
    Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4):263–270CrossRefGoogle Scholar
  47. 47.
    Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586CrossRefGoogle Scholar
  48. 48.
    Mkhoyan KA, Kirkland EJ, Silcox J, Alldredge ES (2004) Atomic level scanning transmission electron microscopy characterization of GaN/AlN quantum wells. J Appl Phys 96(1):738–746CrossRefGoogle Scholar
  49. 49.
    Varela M, Gazquez J, Pennycook SJ (2012) STEM-EELS imaging of complex oxides and interfaces. MRS Bull 37(01):29–35CrossRefGoogle Scholar
  50. 50.
    Van Tendeloo G, Bals S, Van Aert S, Verbeeck J, Van Dyck D (2012) Advanced electron microscopy for advanced materials. Adv Mater 24:5655–5675CrossRefGoogle Scholar
  51. 51.
  52. 52.
  53. 53.
    Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  55. 55.
    Ciancio R, Carlino E, Rossi G, Aruta C, Scotti di Uccio U, Vittadini A, Selloni A (2012) Magnéli- like phases in epitaxial anatase TiO2 thin films. Phys Rev B 86:104110CrossRefGoogle Scholar
  56. 56.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574. doi:10.1038/nature08879CrossRefGoogle Scholar
  57. 57.
    Malajovich I, Berry JJ, Samarth N, Awschalom DD (2001) Persistant sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411:770CrossRefGoogle Scholar
  58. 58.
    Wolf SA, Awschalom D, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488CrossRefGoogle Scholar
  59. 59.
    Grabs P, Richter G, Fiederling R, Becker CR, Ossau W, Schmidt G, Molenkamp LW, Weigand W, Umbach E, Sedova IV, Ivanov SV (2002) Molecular-beam epitaxy of (Cd,Mn)Se on InAs, a promising material system for spintronics. Appl Phys Lett 80:3766, and references thereinCrossRefGoogle Scholar
  60. 60.
    Schulz O, Strassburg A, Rissoni T, Rodt S, Reissmann L, Pohl UW, Bimberg D, Klude M, Hommel D, Itoh S, Nakano K, Ishibashi A (2002) Operation and catastrophic optical degradation of II–VI laser diodes at output powers larger than 1 W. Phys Stat Sol B 229:943–948, and references thereinCrossRefGoogle Scholar
  61. 61.
    Guha S, DePuydt JM, Qiu J, Höfler GE, Haase MA, Wu BJ, Cheng H (1993) Role of stacking faults as misfit dislocation sources and nonradiative recombination centers in II‐VI heterostructures and devices. Appl Phys Lett 63:3023CrossRefGoogle Scholar
  62. 62.
    Hua GC, Otsuka N, Grillo DC, Fan Y, Han J, Ringle MD, Gunshor RL, Hovinen M, Nurmikko AV (1994) Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue‐green laser diode. Appl Phys Lett 65:1331CrossRefGoogle Scholar
  63. 63.
    Kuo LH, Salamanca-Riba L, Wu BJ, Höfler BJ, DePuydt JM, Cheng H (1995) Dependence of the density and type of stacking faults on the surface treatment of the substrate and growth mode in ZnSxSe1 − x/ZnSe buffer layer/GaAs heterostructures. Appl Phys Lett 67:3298CrossRefGoogle Scholar
  64. 64.
    Petruzzello J, Haberern KW, Herko SP, Marshall T, Gaines JM, Guha S, U’Ren S, Haugen JM (1996) Characterization of low defect density blue-green lasers. J Cryst Growth 159:573CrossRefGoogle Scholar
  65. 65.
    Bonard J-M, Ganiere J-D, Heun S, Paggel JJ, Rubini S, Sorba L, Franciosi A (1997) Stacking faults in pseudomorphic ZnSe-GaAs and lattice-matched ZnSe-In0.04 Ga0.96 As layers. Phil Mag Lett 75:219CrossRefGoogle Scholar
  66. 66.
    Wang N, Fung KK, Sou IK (2000) Direct observation of stacking fault nucleation in the early stage of ZnSe/GaAs pseudomorphic epitaxial layer growth. Appl Phys Lett 77:2846CrossRefGoogle Scholar
  67. 67.
    Jackson AG (1991) Handbook of crystallography. Springer, New YorkCrossRefGoogle Scholar
  68. 68.
    Amelinckx S (1992) Kinematical and dynamical diffraction theory in electron microscopy in materials science. In: Merli PG, Vittori Antisari M (eds) World Scientific - Singapore-New Jersey-London-Hong KongGoogle Scholar
  69. 69.
    Colli A, Carlino E, Pelucchi E, Grillo V, Franciosi A (2004) Local interface composition and native stacking fault density in ZnSe/GaAs (001) heterostructures. Jour Appl Phys 96(5):2592–2602CrossRefGoogle Scholar
  70. 70.
    Thomas G (1975) In: Valdre U, Ruedl E (eds) Introduction to transmission electron microscopy in electron microscopy in materials science. Commission of the European Communities, Directorate General, Luxembourg, EUR 5515eGoogle Scholar
  71. 71.
    Colli A, Pelucchi E, Franciosi A (2003) Controlling the native stacking fault density in II-VI/III-V heterostructures. Appl Phys Lett 83:81, and references thereinCrossRefGoogle Scholar
  72. 72.
    Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111CrossRefGoogle Scholar
  73. 73.
    Li D, Gonsalves JM, Otsuka N, Qiu J, Kobayashi M, Gunshor RL (1990) Structure of the ZnSe/GaAs heteroepitaxial interface. Appl Phys Lett 57:449CrossRefGoogle Scholar
  74. 74.
    Sun Y, Scott Thompson E, Nishida T (2010) Strain effect in semiconductors: theory and applications. Springer New York Dordrecht Heidelberg, London. ISBN 978-1-4419-0551-2CrossRefGoogle Scholar
  75. 75.
    Spessot A, Frabboni S, Balboni R, Armigliato A (2007) Method for determination of the displacement field in patterned nanostructures by TEM/CBED analysis of split high-order Laue zone line profiles. J Microsc 226:140–155CrossRefGoogle Scholar
  76. 76.
    Jacob D, Androussi Y, Lefebvre A (2001) LACBED measurement of the chemical composition of a thin InxGa1-x As layer buried in a GaAs matrix. Ultramicroscopy 89:299–303CrossRefGoogle Scholar
  77. 77.
    Janssens KGF, Van der Biest O, Vanhellemont J, Maes HE (1997) Assessment of the quantitative characterization of localized strain by using electron diffraction contrast imaging. Ultramicroscopy 69:151–167CrossRefGoogle Scholar
  78. 78.
    Miller PD, Liu CP, Murray Gibson J (2000) TEM measurement of strain in coherent quantum heterostructures. Ultramicroscopy 84:225–233CrossRefGoogle Scholar
  79. 79.
    Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 4:131–146CrossRefGoogle Scholar
  80. 80.
    Hytch MJ, Plamann T (2001) Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87:199–212CrossRefGoogle Scholar
  81. 81.
    Niermann T, Park JB, Lehmann M (2011) Local estimation of lattice constants in HRTEM images. Ultramicroscopy 111:1083–1092CrossRefGoogle Scholar
  82. 82.
    Liu CP, Preston AR, Boothroyd CB, Humphreys CJ (1999) Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images. J Microsc 194(1):171–182CrossRefGoogle Scholar
  83. 83.
    De Caro L, Giuffrida A, Carlino E, Tapfer L (1997) Effect of the elastic stress relaxation on the hrtem image contrast of strained heterostructures. Acta Cryst A 53:168CrossRefGoogle Scholar
  84. 84.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  85. 85.
    Ojo W, Xu S, Delpech F, Nayral C, Chaudret B (2012) Room-temperature synthesis of air-stable and size-tunable luminescent ZnS-coated Cd3P2 nanocrystals with high quantum yields. Angew Chem Int Ed 51:738–741CrossRefGoogle Scholar
  86. 86.
    KantaHaldar K, Sinha G, Lahtinen J, Patra A (2012) Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Appl Mater Interfaces 4:6266–6272CrossRefGoogle Scholar
  87. 87.
    Kim I, Haverinen HM, Wang Z, Madakuni S, Kim Y, Li J, Jabbour GE (2009) Efficient organic solar cells based on planar metallophthalocyanines. Chem Mater 21:4256–4260CrossRefGoogle Scholar
  88. 88.
    Mirkovic T, Rossouw D, Botton GA, Gregory D (2011) Scholes broken band alignment in EuS-CdS nanoheterostructures. Chem Mater 23:181–187CrossRefGoogle Scholar
  89. 89.
    Taraci JL, Hytch MJ, Clement T, Peralta P, McCartney MR, Drucker J, Picraux ST (2005) Strain mapping in nanowires. Nanotechnology 16:2365–2371CrossRefGoogle Scholar
  90. 90.
    Buonsanti R, Grillo V, Carlino E, Giannini C, Gozzo F, Garcia-Hernandez M, Garcia MA, Cingolani R, Cozzoli PD (2010) Architectural control of seeded grown iron oxide/TiO2 nanorod heterostructures: the role of seeds in topology selection. J Am Chem Soc 132(7):2437–2464CrossRefGoogle Scholar
  91. 91.
    Hu GB, Peng L-M, Yu QF, Lu HQ (2000) Automated identification of symmetry in CBED patterns: a genetic approach. Ultramicroscopy 84:47–56CrossRefGoogle Scholar
  92. 92.
    Tanaka M, Saito R, Sekii H (1983) Point-group determination by convergent-beam electron diffraction. Acta Cryst A 39:357CrossRefGoogle Scholar
  93. 93.
    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  94. 94.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427CrossRefGoogle Scholar
  95. 95.
    Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3(7):961–963CrossRefGoogle Scholar
  96. 96.
    Cui Y, Banin U, Bjork MT, Alivisatos AP (2005) Electrical transport through a single nanoscale semiconductor branch point. Nano Lett 5(7):1519–1523CrossRefGoogle Scholar
  97. 97.
    Carbone L, Kudera S, Carlino E, Parak WJ, Cingolani R, Manna L (2006) Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128(3):748–755CrossRefGoogle Scholar
  98. 98.
    Yan YF, Al-Jassim MM, Chisholm MF, Boatner LA, Pennycook SJ, Oxley M (2005) [1100]/[1102] twin boundaries in wurtzite ZnO and group-III-nitrides. Phys ReV B 71(4):041309CrossRefGoogle Scholar
  99. 99.
    Hawkes PW (2009) Aberration correction past and present. Phil Trans R Soc A 28 367(1903):3637–3664CrossRefGoogle Scholar
  100. 100.
    Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Muller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Schmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008) Atomic structure of core-shell precipitates in Al-Li-Sc-Zr alloys studied by analytical and aberration-corrected TEM/STEM. Microsc Microan 14:469CrossRefGoogle Scholar
  101. 101.
    Meyer JC, Kisielowski C, Erni R, Rossel MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582CrossRefGoogle Scholar
  102. 102.
    Gabor D (1948) A new microscopic principle. Nature 161:777CrossRefGoogle Scholar
  103. 103.
    Fan H, Zhong ZZ, Zheng C, Li F (1985) Image processing in high-resolution electron microscopy using direct method. Acta Crystallogr A41:163–165CrossRefGoogle Scholar
  104. 104.
    Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769CrossRefGoogle Scholar
  105. 105.
    Fienup JR (1987) Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J Opt Soc Am A4:118–127CrossRefGoogle Scholar
  106. 106.
    Abbey B, Nugent KA, Williams GJ, Clark JN, Peele AG, Pfeifer MA, De Jonge M, McNulty I (2008) Keyhole coherent diffractive imaging. Nature 4:394–398Google Scholar
  107. 107.
    Shannon (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):1021Google Scholar
  108. 108.
    Sayre D (1952) Some implications of a theorem due to Shannon. Acta Cryst 5:843CrossRefGoogle Scholar
  109. 109.
    Muller DA, Silcox J (1995) Delocalization in inelastic scattering. Ultramicroscopy 59:195–213CrossRefGoogle Scholar
  110. 110.
    Howie A (1979) Image-contrast and localized signal selection technique. J Microsc Oxford 117:11–23CrossRefGoogle Scholar
  111. 111.
    Bourdillon AJ, Self PG, Stobbs WM (1981) Crystallographic orientation effects in energy dispersive X-ray analysis. Philos Mag A 44:1335–1350CrossRefGoogle Scholar
  112. 112.
    Kohl H, Rose H (1985) Theory of image formation by inelastically scattered electrons in the electron microscope. Adv Electron Electron Phys 65:173CrossRefGoogle Scholar
  113. 113.
    Messiah A (1999) Quantum mechanics. Dover, North-Holland Publishing Company, AmsterdamGoogle Scholar
  114. 114.
    Lupini AR, Pennycook SJ (2003) Localization in elastic and inelastic scattering. Ultramicroscopy 96:313–322CrossRefGoogle Scholar
  115. 115.
    Pennycook SJ (2002) Structure determination through Z-contrast microscopy. Adv Imaging Electron Phys 123:173–206, P. G. Merli, G. Calestani, and M. Vittori-Antisari, EdsCrossRefGoogle Scholar
  116. 116.
    Stöhr J, Wu Y, Dunham D, Tonner BP (1993) Element-specific magnetic microscopy with circularly polarized X-rays. Science 259:658–661Google Scholar
  117. 117.
    Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70(5):694–697CrossRefGoogle Scholar
  118. 118.
    Schattschneider P, Ennena I, Stoger-Pollach M, Verbeeck J, Mauchamp V, Jaouen M (2010) Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110:1038–1041CrossRefGoogle Scholar
  119. 119.
    Lidbaum H, Rusz J, Rubino S, Liebig A, Hjorvarsson B, Oppeneer PM, Eriksson O, Leifer K (2010) Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 110:1380–1389CrossRefGoogle Scholar
  120. 120.
    Verbeeck J, Tian H, Schattschneider P (2010) Production and application of electron vortex beams. Nature 467:301–303CrossRefGoogle Scholar
  121. 121.
  122. 122.
  123. 123.
    Krivanek OL, Dellby N. Murfitt MF (2011) Aberration-corrected scanning transmission electron microscopy of semiconductors. J Phys: Conf Ser 326:012005. Seventeenth international conference on microscopy of semiconducting materials, 2011. IOP Publishing. doi:10.1088/1742-6596/326/1/012005Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centro di Microscopia Elettronica – Consiglio Nazionale delle Ricerche – Istituto di Officina dei Materiali (CNR-IOM-TASC)TriesteItaly

Personalised recommendations