Advertisement

3D Electron Microscopy Applied to Nanoscience

  • Ileana Florea
  • Ovidiu ErsenEmail author
  • Charles Hirlimann
Chapter

Abstract

Nanotechnologies and nanosciences underwent an enhanced development for more than a quarter of a century now, while in the meantime the specific techniques necessary to characterize nano-objects and nanostructures have been lagging behind. It is the aim of this contribution to demonstrate, through highlighting examples, that recent progress in the use of electron microscopy techniques based on tomography permitted to fulfill the gap between the development of new materials and structures and their characterization. Progress came out from the development of simple but stringent software that allowed performing precise 3D reconstruction of objects at the nanoscale. A special focus is put here on two new techniques: quantitative 3D tomography and analytical 3D tomography. The former technique has given access to quantitative measurement of specific parameters in nano – objects and – structures such as specific surfaces, porosities, specific volume, and long distance order while the latter based on electron energy loss spectroscopy details the 3D chemical composition of these objects and structures on a 5 nm scale.

Keywords

Tilt Angle Electron Tomography Electron Energy Loss Spectroscopy Algebraic Reconstruction Technique Electron Microscopy Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew Chem Int Ed 42:3146–3150CrossRefGoogle Scholar
  2. 2.
    Matos JR, Kruk M, Mercuri LP, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia TJ, Liu Y (2003) Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time. J Am Chem Soc 125:821–829CrossRefGoogle Scholar
  3. 3.
    Blavette D, Bostel A, Sarrau JM, Deconihout B, Menand A (1993) An atom probe for three – dimensional tomography. Nature 363:432–435CrossRefGoogle Scholar
  4. 4.
    Friedrich H, de Jongh PE, Verkleij AJ, de Jong KP (2009) Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev 109:1613–1629CrossRefGoogle Scholar
  5. 5.
    Möbus GB, Inkson J (2007) Nanoscale tomography in materials science. Mater Today 10:18–25CrossRefGoogle Scholar
  6. 6.
    Midgley PA, Dunin-Borkowski RE (2009) Electron tomography and holography in materials science. Nat Mater 8:271–280CrossRefGoogle Scholar
  7. 7.
    Radon J (1917) Uber die Bestimmung von Funktionnen durch ihre integralwerte längs gewwisser Mannigfaltigkeiten. Ber Saechs Akad Wiss Leipzig Math-Phys Kl69:262Google Scholar
  8. 8.
    Zeng GL (2001) Image reconstruction – a tutorial. Comput Med Imaging Graph 25:97–103CrossRefGoogle Scholar
  9. 9.
    Kremer RJ, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using Imod. J Struct Biol 116:71–76CrossRefGoogle Scholar
  10. 10.
    Koster AJ, Ziese U, Verkleij AJ, Janssen AH, de Jong KP (2000) Three dimensional transmission electron microscopy a novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104:9368–9370CrossRefGoogle Scholar
  11. 11.
    Ersen O, Werckmann J, Houllé M, Ledoux MJ, Pham-Huu C (2007) 3D Electron microscopy study of metal particles inside multiwalled carbon nanotubes. Nano Lett 7:1898–1907CrossRefGoogle Scholar
  12. 12.
    Ersen O, Hirlimann C, Drillon M, Werckmann J, Tihay F, Pham-Huu C, Crucifix C, Schultz P (2007) 3D-TEM characterization of nanometric objects. Solid State Sci 9:1088–1098CrossRefGoogle Scholar
  13. 13.
    Roiban L, Hartmann L, Fiore A, Djurado D, Chandezon F, Reiss P, Legrand J-F, Doyle S, Brinkmann M, Ersen O (2012) Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization. Nanoscale 4(22):7212–7220CrossRefGoogle Scholar
  14. 14.
    Florea I, Houlle M, Ersen O, Roiban L, Deneuve A, Janowska I, Nguyen P, Pham-Huu C (2009) Selective deposition of palladium nanoparticles inside the bimodal porosity of β-SiC investigated by electron tomography. J Phys Chem C 113:17711–17719CrossRefGoogle Scholar
  15. 15.
    Midgley PA, Weyland M, Thomas JM, Johnson BFG (2001) Z Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Commun 10:907–908CrossRefGoogle Scholar
  16. 16.
    Midgley PA, Weyland M (2003) 3D Electron microscopy in the physical sciences the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431CrossRefGoogle Scholar
  17. 17.
    Jarausch K, Thomas P, Leonard DN, Twesten R, Booth CR (1984) Four-dimensional STEM-EELS: enabling nano-scale chemical tomography. Ultramicroscopy 13:57–70CrossRefGoogle Scholar
  18. 18.
    Saxton W, Baumeister W, Hahn M (2009) Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 109:326–337CrossRefGoogle Scholar
  19. 19.
    Gordon R, Bender R, Herman G (1970) Algebraical reconstruction technique (ART) for three-dimensional electron microscopy and X-rays photography. J Theor Biol 24:471CrossRefGoogle Scholar
  20. 20.
    Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117CrossRefGoogle Scholar
  21. 21.
    Batenburg KJ, Bals S, Sijbers J, Kübel C, Midgley PA, Hernandez JC, Kaiser U, Encina ER, Coronado EA, Van Tendeloo G (2009) 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109:730CrossRefGoogle Scholar
  22. 22.
    Roelandts T, Batenburg KJ, Biermans E, Kubel C, Bals S, Sijbers J (2012) Accurate segmentation of dense nanoparticles by partially discrete electron tomography. Ultramicroscopy 114:96CrossRefGoogle Scholar
  23. 23.
    Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Aronova MA, Kim YC, Harmon R, Sousa AA, Zhang A, Leapman RD (2007) Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography, (QuEST). J Struct Biol 160:35–48CrossRefGoogle Scholar
  27. 27.
    Jin-Phillipp NY, Koch CT, van Aken PA (2011) Toward quantitative core-loss EFTEM tomography. Ultramicroscopy 111:1255–1261CrossRefGoogle Scholar
  28. 28.
    Gass MH, Koziol KKK, Windle AH, Midgley PA (2006) Four-dimensional spectral tomography of carbonaceous nanocomposites. Nano Lett 6(3):376–379CrossRefGoogle Scholar
  29. 29.
    Möbus G, Inkson BJ (2001) Three dimensional reconstruction of buried nanoparticles by element sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79:1369–1371CrossRefGoogle Scholar
  30. 30.
    Messaoudi C, Boudier T, Sanchez Sorzano C, Marco S (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. Bioinformatics 6:288Google Scholar
  31. 31.
    Roiban L, Sorbier L, Pichon C, Bayle-Guillemaud P, Werckmann J, Drillon M, Ersen O (2012) 3D Chemistry of multiphase nanomaterials by EFTEM tomography. Microsc Microanal 18(5):1118–1128CrossRefGoogle Scholar
  32. 32.
    Medalia V, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209CrossRefGoogle Scholar
  33. 33.
    Koster AJ, Ziese U, Verkleij AJ, Janssen AH, de Jong KP (2000) Three dimensional transmission electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J Phys Chem B 104:9368CrossRefGoogle Scholar
  34. 34.
    Buseck P, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Posfai M, Weyland M (2001) Magnetite morphology and life on Mars. Proc Natl Acad Sci U S A 98:13490–13495CrossRefGoogle Scholar
  35. 35.
    Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley P, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Structural and morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal synthesis. Nano Lett 7:421–425Google Scholar
  36. 36.
    Florea I, Demortiere A, Petit C, Bulou H, Hirlimann C, Ersen O (2012) Electron tomography and 3D molecular simulations of platinum nanocrystals. Nanoscale 4:5125CrossRefGoogle Scholar
  37. 37.
    Hungria AB, Juarez BH, Klinke C, Weller H, Midgley PA (2008) 3-D Characterization of CdSe Nanoparticles attached to carbon nanotubes. Nano Res 1:89–97Google Scholar
  38. 38.
    Möbus G, Inkson BJ (2001) Three dimensional reconstruction of buried nanoparticles by element sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79:1369CrossRefGoogle Scholar
  39. 39.
    Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chirazi K, Janowska I, Pham-Huu C (2012) 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134:9672–9680CrossRefGoogle Scholar
  40. 40.
    Leapman RD, Kocsis E, Zhang G, Talbot TL, Laquerriere P (2004) Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100(2):115–125CrossRefGoogle Scholar
  41. 41.
    van Aert S, Batenburg KJ, Rossel MD, Erni R, Van Tendeloo G (2011) Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470:374CrossRefGoogle Scholar
  42. 42.
    Florea I, Houlle M, Ersen O, Roiban L, Deneuve A, Janowska I, Nguyen P, Pham C, Pham-Huu C (2009) Selective deposition of palladium nanoparticles inside the bimodal porosity of β-SiC investigated by electron tomography. J Phys Chem C 113:17711–17719CrossRefGoogle Scholar
  43. 43.
    Ersen O, Werckmann J, Houlle M, Ledoux M-J, Pham-Huu C (2007) 3D Electron microscopy study of metal particles inside multi-walled carbon nanotubes. Nano Lett 7:1907–1998CrossRefGoogle Scholar
  44. 44.
    Roiban L, Sorbier L, Pichon C, Pham-Huu C, Drillon M, Ersen O (2012) 3D-TEM investigation of the nanostructure of the δ-Al2O3 catalyst support decorated with Pd nanoparticles. Nanoscale 4:946CrossRefGoogle Scholar
  45. 45.
    Moldovan SM, Bulou H, Dappe YJ, Janowska I, Bégin D, Pham-Huu C, Ersen O (2012) On the evolution of Pt nanoparticles on few-layer graphene supports in the high-temperature range. J Phys Chem C 116(16):9274–9282CrossRefGoogle Scholar
  46. 46.
    Borowik Ł, Florea I, Deresmes D, Ersen O, Hourlier D, Mélin T (2012) Surface and intrinsic conduction properties of Au-catalyzed Si nanowires. J Phys Chem C 116:6601CrossRefGoogle Scholar
  47. 47.
    Florea I, Feral-Martin C, Majimel J, Ihiawakrim D, Hirlimann C, Ersen O (2013) 3D tomographic analyses of CeO2 nanoparticles. J Cryst Growth Des 13:1110–1121Google Scholar
  48. 48.
    Trovarelli A (1996) Catalytic Properties of Ceria and CeO2-Containing Materials. Catal Rev Sci Eng 38:439–520Google Scholar
  49. 49.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  50. 50.
    Strickland-Constable RF (1968) Kinetics and mechanism of crystallization from the fluid phase and of the condensation and evaporation of liquids. Academic, LondonGoogle Scholar
  51. 51.
    Florea I, Demortière A, Petit C, Bulou H, Hirlimann C, Ersen O (2012) 3D quantitative analysis of platinum nanocrystal superlattices by electron tomography. ACS Nano 6:2574CrossRefGoogle Scholar
  52. 52.
    Bigot J-Y, Kesserwan H, Halté V, Ersen O, Moldovan MS, Kim TH, Jang J-T, Cheon J (2012) Magnetic properties of annealed core–shell CoPt nanoparticles. Nano Lett 12:1189CrossRefGoogle Scholar
  53. 53.
    Ersen O, Parmentier J, Solovyov L, Drillon M, Pham-Huu C, Werckmann J, Schultz P (2008) Direct observation of stacking faults and pore connections in ordered cage-type mesoporous silica FDU-12 by electron tomography. J Am Chem Soc 130:16800CrossRefGoogle Scholar
  54. 54.
    Ayala P, Arenal R, Ru M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48(3):575–586CrossRefGoogle Scholar
  55. 55.
    Arenal R, De la Pena F, Stephan O, Walls M, Tence M, Loiseau A, Colliex C (2008) Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. Ultramicroscopy 109:32CrossRefGoogle Scholar
  56. 56.
    Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi C, Chirazi K, Janowska I, Pham-Huu C (2012) 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134:9672–9680CrossRefGoogle Scholar
  57. 57.
    Kutana A, Giapis KPS (2009) First-principles study of chemisorption of oxygen and aziridine on graphitic nanostructures. J Phys Chem C 113:14721–14726CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ileana Florea
    • 1
  • Ovidiu Ersen
    • 1
    Email author
  • Charles Hirlimann
    • 1
  1. 1.Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR 7504 CNRS – Université de StrasbourgStrasbourgFrance

Personalised recommendations