TEM Characterization of Metallic Nanocatalysts



Transmission electron microscopy (TEM) techniques, including scanning transmission electron microscopy (STEM); X-ray energy-dispersive spectroscopy (EDS); electron energy-loss spectroscopy (EELS); selected area (SA), nano-beam (NB), and convergent-beam (CB) electron diffraction (ED); electron tomography (ET); and electron holography, are powerful in characterizing metallic nanocatalysts at both high spatial resolution (∼0.05 nm) and high energy resolution (∼0.1 eV). This chapter will review recently published results on the relationship between the structure and catalytic properties of metallic catalysts from the prospective of electron microscopy. As there already exist excellent books and reviews giving insights into the different TEM techniques [1–6], this chapter will avoid in-depth discussions on electron microscopy techniques and tune its focus toward the application of (S)TEM on metallic nanocatalysts, especially on key issues of structural and chemical characterization; it will also introduce the recent developments in in situ environmental TEM techniques. I sincerely hope that this chapter would be of help to those researchers who come from a background of materials or chemistry and who are interested in the application of TEM characterization. Within such limited space, this chapter could not be exhaustive in covering all TEM-related publications, but would instead put an emphasis on those works published in the last 5 years that are of significant value.


Scanning Transmission Electron Microscopy Transmission Electron Microscope Technique Transmission Electron Microscopy Characterization Scanning Transmission Electron Microscopy Image Secondary Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Drs. Eric Stach, Huolin Xin, Haimei Zheng, Fang Lu, and Ms. Changchang Liu for the helpful discussions. This research at the Center for Functional Nanomaterials, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.


  1. 1.
    Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Pennycook SJ, Nellist PD (eds) (2011) Scanning transmission electron microscopy: image and analysis. Springer, New YorkGoogle Scholar
  3. 3.
    Hawkes P, Spence JCH (eds) (2007) Science of microscopy. Springer, New YorkGoogle Scholar
  4. 4.
    Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd ed. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Goldstein J (2003) Scanning electron microscopy and X-ray microanalysis. Kluwer, HollandCrossRefGoogle Scholar
  6. 6.
    Spence JCH, Zuo JM (1992) Electron microdiffraction. Plenum, New York/LondonCrossRefGoogle Scholar
  7. 7.
    Scott SL, Crudden CM, Cathleen M, Jones CW, Christopher W (eds) (2003) Nanostructured catalysts. Springer, New YorkGoogle Scholar
  8. 8.
    Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691CrossRefGoogle Scholar
  9. 9.
    Davis M (Chair), Tilley D (Co-Chair) (2003) NSF workshop report on “future directions in catalysis: structures that function on the nanoscale,” NSF Headquarters, Arlington, 19–20 June 2003Google Scholar
  10. 10.
    Datye AK (2003) Electron microscopy of catalysts: recent achievements, and future prospects. J Catal 216:144–154CrossRefGoogle Scholar
  11. 11.
    Jin R (2012) The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol Rev 1:31–56CrossRefGoogle Scholar
  12. 12.
    Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M et al (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  13. 13.
    Pantel R, Clement L, Rouviere JL, Kwakman L (2003) Strain measurements at a NiSi/Si interface using STEM-CBED: a quantification method for stress relaxation during TEM lamella preparation. Microsc Microanal 9(suppl 2):866–867Google Scholar
  14. 14.
    Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409CrossRefGoogle Scholar
  15. 15.
    Egerton RF, McLeod R, Wang F, Malac M (2010) Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110:991–997CrossRefGoogle Scholar
  16. 16.
    Su D, Wang F, Ma C, Jiang N (2013) Engineering nano-composite Li4Ti5O12 anodes via scanning electron-probe fabrication. Nano Energy 2:343–350CrossRefGoogle Scholar
  17. 17.
    Jiang N, Zhou S, Su D, Qiu J (2012) Do Eu dopants prefer the precipitated LaF3 nanocrystals in glass ceramics? Phys Status Solidi RRL 6(12):487–489CrossRefGoogle Scholar
  18. 18.
    Zheng H, Rivest JB, Miller TA, Sadtler B et al (2011) Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333:206–209CrossRefGoogle Scholar
  19. 19.
    Liu C, Lee S, Dong S, Lee B et al (2012) Controlling the particle size of ZrO2 nanoparticles in hydrothermally stable ZrO2/MWCNT composites. Langmuir 28(49):17159–17167CrossRefGoogle Scholar
  20. 20.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42Google Scholar
  21. 21.
    Shekhar M, Wang J, Lee W, Akatay MC et al (2012) Counting Au catalytic sites for the water–gas shift reaction. J Catal 293:94–102CrossRefGoogle Scholar
  22. 22.
    Shekhar M, Wang J, Lee W, Williams WD et al (2012) Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc 134:4700–4708CrossRefGoogle Scholar
  23. 23.
    Ding Y, Fan F, Tian Z, Wang ZL (2010) Atomic structure of Au-Pd bimetallic alloyed nanoparticles. J Am Chem Soc 132:12480–12486CrossRefGoogle Scholar
  24. 24.
    Du W, Wang Q, LaScala CA, Zhang L et al (2011) Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. J Mater Chem 21:8887–8892CrossRefGoogle Scholar
  25. 25.
    Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146CrossRefGoogle Scholar
  26. 26.
    Johnson CL, Snoeck E, Ezcurdia M, Rodriguez-Gonzalez B et al (2008) Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat Mater 7:120–124CrossRefGoogle Scholar
  27. 27.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Tao J, Liu H, Zeng J et al (2011) Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation. Small 7(16):2307–2312CrossRefGoogle Scholar
  29. 29.
    Wang C, Tian W, Ding Y, Ma Y et al (2010) Rational synthesis of heterostructured nanoparticles with morphology control. J Am Chem Soc 132:6524–6529CrossRefGoogle Scholar
  30. 30.
    Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175CrossRefGoogle Scholar
  31. 31.
    Lim B, Xiong Y, Xia Y (2007) A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew Chem Int Ed 46:9279–9282CrossRefGoogle Scholar
  32. 32.
    Lu F, Zhang Y, Zhang L, Zhang Y et al (2011) Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum. J Am Chem Soc 133:18074–18077CrossRefGoogle Scholar
  33. 33.
    Wang J, Ma C, Choi Y, Su D et al (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Chem Soc 133:13551–13557CrossRefGoogle Scholar
  34. 34.
    Wang F, Li C, Sun L-D, Wu H et al (2011) Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J Am Chem Soc 133:1106–1111CrossRefGoogle Scholar
  35. 35.
    Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2:2045–2053CrossRefGoogle Scholar
  36. 36.
    Henning AM, Watt J, Miedziak PJ, Cheong S et al (2013) Gold–palladium core–shell nanocrystals with size and shape control optimized for catalytic performance. Angew Chem Int Ed 52:1477–1480CrossRefGoogle Scholar
  37. 37.
    Wang R, Dmitrieva O, Farle M, Dumpich G et al (2009) FePt icosahedra with magnetic cores and catalytic shells. J Phys Chem C 113:4395–4400CrossRefGoogle Scholar
  38. 38.
    Wang R, Dmitrieva O, Farle M, Dumpich G et al (2008) Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys Rev Lett 100:017205–017208CrossRefGoogle Scholar
  39. 39.
    Langille MR, Zhang J, Personick ML, Li S et al (2012) Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337:954–957CrossRefGoogle Scholar
  40. 40.
    Van Aert S, Batenburg KJ, Rossell MD, Erni R et al (2011) Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470:374–377CrossRefGoogle Scholar
  41. 41.
    Koning RI, Koster AJ (2009) Cryo-electron tomography in biology and medicine. Ann Anat 191:427–445CrossRefGoogle Scholar
  42. 42.
    Midgley PA, Weyland M, Thomas JM, Johnson BFG (2001) Z-contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem Commun 10:907–908CrossRefGoogle Scholar
  43. 43.
    Jinschek JR, Batenburg KJ, Calderon HA, Kilaas R et al (2008) 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108:589–604CrossRefGoogle Scholar
  44. 44.
    Florea I, Demortiere A, Petit C, Bulou H et al (2012) Electron tomography and 3D molecular simulations of platinum nanocrystals. Nanoscale 4:5125–5131CrossRefGoogle Scholar
  45. 45.
    Arslan I, Yates TJV, Browning ND, Midgley PA (2005) Embedded nanostructures revealed in three dimensions. Science 309:2195–2198CrossRefGoogle Scholar
  46. 46.
    Xin HL, Muller DA (2009) Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58(3):157CrossRefGoogle Scholar
  47. 47.
    Scott MC, Chen C-C, Mecklenburg M, Zhu C et al (2012) Electron tomography at 2.4-Å resolution. Nature 483:444–448CrossRefGoogle Scholar
  48. 48.
    Yu Y, Xin HL, Hovden R, Wang D et al (2012) Three-dimensional tracking and visualization of hundreds of Pt−Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12:4417–4423CrossRefGoogle Scholar
  49. 49.
    Arslan I, Stach EA (2012) Seeing atoms in three dimensions. Nat Mater 11:911–912CrossRefGoogle Scholar
  50. 50.
    Xin HL, Pach EA, Diaz RE, Stach EA (2012) Revealing correlation of valence state with nanoporous structure in cobalt catalyst nanoparticles by in situ environmental TEM. ACS Nano 6(5):4241–4247CrossRefGoogle Scholar
  51. 51.
    Prieto G, Zecevic J, Friedrich H, de Jong KP et al (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39CrossRefGoogle Scholar
  52. 52.
    Yang H (2011) Platinum-based electrocatalysts with core–shell nanostructures. Angew Chem Int Ed 50:2674–2676CrossRefGoogle Scholar
  53. 53.
    Sasaki K, Naohara H, Choi YM, Cai Y et al (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3:1115. doi:10.1038/ncomms2124CrossRefGoogle Scholar
  54. 54.
    Wang JX, Inada H, Wu L, Zhu Y et al (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRefGoogle Scholar
  55. 55.
    Zhang S, Guo S, Zhu H, Su D et al (2012) Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J Am Chem Soc 134:5060–5063CrossRefGoogle Scholar
  56. 56.
    Xin HL, Mundy JA, Liu Z, Cabezas R et al (2012) Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12:490–497CrossRefGoogle Scholar
  57. 57.
    Sasaki K, Naohara H, Cai Y, Choi YM et al (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607CrossRefGoogle Scholar
  58. 58.
    Wang D, Yu Y, Xin HL, Hovden R et al (2012) Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett 12:5230–5238CrossRefGoogle Scholar
  59. 59.
    Mazumder V, Chi M, More KL, Sun S (2010) Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew Chem Int Ed 49:9368–9372CrossRefGoogle Scholar
  60. 60.
    Mazumder V, Chi M, More KL, Sun S (2010) Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J Am Chem Soc 132:7848–7849CrossRefGoogle Scholar
  61. 61.
    Xu J, Wilson AR, Rathmell AR, Howe J et al (2011) Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano 8:6119–6127CrossRefGoogle Scholar
  62. 62.
    Du W, Wang Q, Saxner D, Aaron Deskins N et al (2011) Highly active iridium/iridium-Tin/Tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. J Am Chem Soc 133:15172–15183CrossRefGoogle Scholar
  63. 63.
    Du W, Su D, Wang Q, Frenkel AI et al (2011) Promotional effects of bismuth on the formation of platinum-bismuth nanowires network and the electrocatalytic activity toward ethanol oxidation. Crystal Growth Design 11(2):594–599CrossRefGoogle Scholar
  64. 64.
    Du W, Deskins NA, Su D, Teng X (2012) Iridium − ruthenium alloyed nanoparticles for the ethanol oxidation fuel cell reactions. ACS Catal 2:1226–1231CrossRefGoogle Scholar
  65. 65.
    Gong K, Su D, Adzic RR (2010) Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 132:14364–14366CrossRefGoogle Scholar
  66. 66.
    Kuttiyie KA, Sasaki K, Choi Y, Su D et al (2012) Nitride stabilized PtNi core−shell nanocatalyst for high oxygen reduction activity. Nano Lett 12(12):6266–6271CrossRefGoogle Scholar
  67. 67.
    Johnston-Peck AC, Scarel G, Wang J, Parsons GN et al (2011) Sinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers. Nanoscale 3:4142–4149CrossRefGoogle Scholar
  68. 68.
    Johnston-Peck AC, Tracy JB (2012) Phase transformation of alumina-coated FePt nanoparticles. J Appl Phys 111:07B522CrossRefGoogle Scholar
  69. 69.
    Wieckowski A, Savinova ER, Constantinos VG (2003) Catalysis and electrocatalysis at nanoparticle surfaces, 1st edn. CRC, New YorkCrossRefGoogle Scholar
  70. 70.
    Sanchez SI, Small MW, Sivaramakrishnan S, Wen J et al (2010) Visualizing materials chemistry at atomic resolution. Anal Chem 82:2599–2607CrossRefGoogle Scholar
  71. 71.
    Liu J, Cowley JM (1988) High resolution SEM in a STEM instrument. Scanning Microsc 2:65–81Google Scholar
  72. 72.
    Bleloch AL, Howie A, Milne RH (1989) High resolution secondary electron imaging and spectroscopy. Ultramicroscopy 31:99–110CrossRefGoogle Scholar
  73. 73.
    Zhu Y, Inada H, Nakamura K, Wall J (2009) Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat Mater 8:808–812CrossRefGoogle Scholar
  74. 74.
    Inada H, Su D, Egerton RF, Konno M et al (2011) Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy 111:865–876CrossRefGoogle Scholar
  75. 75.
    Miao JW, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344CrossRefGoogle Scholar
  76. 76.
    Huang WJ, Zuo JM, Jiang B, Kwon KW et al (2009) Sub-ångström-resolution diffractive imaging of single nanocrystals. Nat Phys 5:129–133CrossRefGoogle Scholar
  77. 77.
    Sharma R (2001) Design and applications of environmental cell transmission electron microscope for in situ observations of gas–solid reactions. Microsc Microanal 7:494–506Google Scholar
  78. 78.
    Gai PL (2002) Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Topics Catal 21(4):161–173CrossRefGoogle Scholar
  79. 79.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2055CrossRefGoogle Scholar
  80. 80.
    Hansen TW, Wagner JB, Dunin-Borkowski RE (2010) Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater Sci Technol 26(11):1338–1344CrossRefGoogle Scholar
  81. 81.
    Wagner JB, Cavalca F, Damsgaard CD, Duchstein LDL et al (2012) Exploring the environmental transmission electron microscope. Micron 43:1169–1175CrossRefGoogle Scholar
  82. 82.
    Gai PL, Boyes ED (2012) In situ TEM measurement methods. Charact Mater :1–11Google Scholar
  83. 83.
    Ciston J, Si R, Rodriguez JA, Hanson C et al (2011) Morphological and structural changes during the reduction and reoxidation of CuO/CeO2 and Ce1-xCuxO2 nanocatalysts: in situ studies with environmental TEM, XRD, and XAS. J Phys Chem C 115:13851–13859CrossRefGoogle Scholar
  84. 84.
    Chenna S, Banerjee R, Crozier PA (2011) Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem 3:1051–1059Google Scholar
  85. 85.
    Chenna S, Crozier PA (2012) Operando transmission electron microscopy: a technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal 2:2395–2402CrossRefGoogle Scholar
  86. 86.
    Creemer JF, Helveg S, Hoveling GH, Ullmann S (2008) Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108:993–998CrossRefGoogle Scholar
  87. 87.
    de Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 5:695–704CrossRefGoogle Scholar
  88. 88.
    Zheng H, Smith RK, Jun Y-W, Kisielowski C et al (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312CrossRefGoogle Scholar
  89. 89.
    Li D, Nielsen MH, Lee JRI, Frandsen C et al (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–1018CrossRefGoogle Scholar
  90. 90.
    Liao H-G, Cui L, Whitelam S, Zheng H (2012) Real-time imaging of Pt3Fe nanorod growth in solution. Science 336:1011–1014CrossRefGoogle Scholar
  91. 91.
    Xin HL, Zheng H (2012) In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett 12:1470–1474CrossRefGoogle Scholar
  92. 92.
    Yuk JM, Park J, Ercius P, Kim K et al (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64CrossRefGoogle Scholar
  93. 93.
    Williamson MJ, Tromp RM, Vereecken PM, Hull R et al (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536CrossRefGoogle Scholar
  94. 94.
    Woehl TJ, Evans JE, Arslan I, Ristenpart WD et al (2012) Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6:8599–8610CrossRefGoogle Scholar
  95. 95.
    Jungjohanna KL, Evans JE, Aguiara JA, Arslan I et al (2012) Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18:621–627CrossRefGoogle Scholar
  96. 96.
    Urban K (2009) Is science prepared for atomic-resolution electron microscopy? Nat Mater 8:260–262CrossRefGoogle Scholar
  97. 97.
    Suenaga K, Koshino M (2010) Atom-by-atom spectroscopy at graphene edge. Nature 468:1088–1090CrossRefGoogle Scholar
  98. 98.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ et al (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRefGoogle Scholar
  99. 99.
    Yoshida H, Kuwauchi Y, Jinschek JR, Sun K et al (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319CrossRefGoogle Scholar
  100. 100.
    Nelayah J, Kociak M, Stephan O, Javier Garcia De Abajo F et al (2007) Mapping surface plasmons on a single metallic nanoparticles. Nat Phys 3:348–353CrossRefGoogle Scholar
  101. 101.
    Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–428CrossRefGoogle Scholar
  102. 102.
    Zewail AH, Thomas JM (2009) 4D Electron microscopy. Imperial College Press, LondonCrossRefGoogle Scholar
  103. 103.
    Zewail AH (2010) Four-dimensional electron microscopy. Science 328:187–193CrossRefGoogle Scholar
  104. 104.
    Kim JS, LaGrange T, Reed BW, Taheri ML et al (2008) Imaging of transient structures using nanosecond in situ TEM. Science 321:1472–1475CrossRefGoogle Scholar
  105. 105.
    Reed BW, LaGrange T, Shuttlesworth RM, Gibson DJ et al (2010) Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev Sci Instrum 81:053706CrossRefGoogle Scholar
  106. 106.
    Yurtsever A, van der Veen RM, Zewail AH (2012) Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335:59–64CrossRefGoogle Scholar
  107. 107.
    Burmans ILC, Weckhuysen BM (2012) Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4:873–886CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations