TEM for Characterization of Nanocomposite Oxide Thin Films: A Case Study on Solution-Derived Lanthanum Strontium Manganites

  • Patricia AbellánEmail author
  • César Moreno
  • Felip Sandiumenge
  • Xavier Obradors


A transmission electron microscope (TEM) allows for direct observation of interfaces and nanoscale particles embedded in a matrix with atomic spatial resolution. It provides chemical and structural information and allows for local strain mapping by the geometrical phase analysis (GPA) technique combined with high-resolution TEM (HRTEM) imaging. In this chapter we apply these capabilities of TEM to the study of epitaxial nanocomposite manganite thin films formed by spontaneous phase separation using a chemical solution deposition route. A methodology to obtain the most significant structural and chemical features from nanocomposite functional films is described.


Misfit Strain Chemical Solution Deposition Nanocomposite Thin Film Matching Distance Manganite Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A portion of this work was performed at the Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the US Department of Energy under Contract No. DE-AC05-76RL01830. C. Moreno thanks financial support from the Japanese Ministry for Education, Culture, Sports, Science, and Technology (MEXT) through ICYS program. P. Abellan acknowledges FPU grant from Spanish MICINN. This work was supported by the Ministerio de Ciencia e Innovation (MAT2008-01022), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae), and the European Union (HIPERCHEM, NESPA).


  1. 1.
    MacManus-Driscoll JL, Zerrer P, Wang H, Yang H, Yoon J, Fouched A, Yu R, Blamire MG, Jia QX (2008) Strain control and spontaneous phase ordering in vertical nanocom-posite heteroepitaxial thin films. Nat Mater 7(4):314–332CrossRefGoogle Scholar
  2. 2.
    Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca- Riba L, Shinde SR, Ogate SB, Viehland D, Jia Y, Schlom DG, Wutting M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3 – CoFe2O4 nanostructures. Science 303(5658):661–663CrossRefGoogle Scholar
  3. 3.
    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefriouri Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2: Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680CrossRefGoogle Scholar
  4. 4.
    Kang S, Goyal A, Li J, Gapud AA, Martin PM, Heatherly L, Thompson JR, Christen DK, List FA, Paranthaman M, Lee DF (2006) High-performance high-Tc superconducting wires. Science 311(5769):1911–1914CrossRefGoogle Scholar
  5. 5.
    Llordes A, Palau A, Gazquez J, Coll M, Vlad R, Pomar A, Arbiol J, Guzman R, Ye S, Rouco V, Sandiumenge F, Ricart S, Puig T, Varela M, Chateigner D, Vanacken J, Gutierrez J, Moshchalkov V, Deutscher G, Magen C, Obradors X (2012) Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat Mater 11:329–336CrossRefGoogle Scholar
  6. 6.
    Moreno C, Abellan P, Sandiumenge F, Casanove M-J, Obradors X (2012) Nanocomposite lanthanum strontium manganite thin films formed by using a chemical solution deposition. Appl Phys Lett 100(2):023103CrossRefGoogle Scholar
  7. 7.
    Yang H, Meng Q, Zhao R et al (2011) Self-assembled nanocomposite oxide films: design, fabrication, and properties. In: Reddy B (eds) Advances in nanocomposites – synthesis, characterization and industrial applications. Intech, New York, ISBN 978-953-307-165-7, pp 947–966 (Chap 40)Google Scholar
  8. 8.
    Moreno C, Abellan P, Hassini A, Ruyter A, del Pino Perez A, Sandiumenge F, Casanove M-J, Santiso J, Puig T, Obradors X (2009) Spontaneous outcropping of self-assembled insulating nanodots in solution-derived metallic ferromagnetic La0.7Sr0.3MnO3 films. Adv Funct Mater 19:2139–2146CrossRefGoogle Scholar
  9. 9.
    Abellan P, Moreno C, Sandiumenge F, Obradors X, Casanove M-J (2011) Misfit relaxation of La0.7Sr0.3MnO3 thin films by a nanodot segregation mechanism. Appl Phys Lett 98(4):041903CrossRefGoogle Scholar
  10. 10.
    Martinez-Julian F, Ricart S, Pomar A, Coll M, Abellan P, Sandiumenge F, Casanove M-J, Obradors X, Puig T, Pastoriza-Santos I, Liz-Marzan LM (2011) Chemical solution approaches to YBa2Cu3O7-Au nanocomposites superconducting thin films. J Nanosc Nanotechnol 11(4):3245–3255CrossRefGoogle Scholar
  11. 11.
    Obradors X, Puig T, Palau A et al (2011) Sandiumenge in: nanostructured superconductors with efficient vortex pinning, Section 3.10. In: Andrews D, Scholes G, Wiederrecht G (eds) Comprehensive nanoscience and technology. Elsevier, Oxford, pp 303–349CrossRefGoogle Scholar
  12. 12.
    Urban KW (2009) Is science prepared for atomic-resolution electron microscopy? Nat Mater 8:260–262CrossRefGoogle Scholar
  13. 13.
    Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146, Google Scholar
  14. 14.
    Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRefGoogle Scholar
  15. 15.
    Ueda K, Tabata H, Kawai T (1998) Ferromagnetism in LaFeO3 – LaCrO3 superlattices. Science 280:1064–1066CrossRefGoogle Scholar
  16. 16.
    Ohtomo A, Muller DA, Grazul JL et al (2002) Artificial charge-modulation atomic-scale perovskite titanate superlattices. Nature 419:378–380CrossRefGoogle Scholar
  17. 17.
    Guiton BS, Davies PK (2007) Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nat Mater 6:586–591CrossRefGoogle Scholar
  18. 18.
    Moshnyaga V, Damaschke B, Shapoval O, Belenchuk A, Faupel J, Lebedev OI, Verbeeck J, Van Tendeloo G, Miicksch M, Tsurkan V, Tidecks R, Samwer K (2003) Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nat Mater 2:247–252CrossRefGoogle Scholar
  19. 19.
    Zheng H, Zhan Q, Zavaliche F, Sheburne M, Straub F, Cruz MP, Chen L-Q, Dahmen U, Ramesh R (2006) Controlling self-assembled perovskite-spinel nanostructures. Nano Lett 6(7):1401–1407CrossRefGoogle Scholar
  20. 20.
    Yang H, Wang H, Yoon J, Wang Y, Jain M, Feldmann DM, Dowden PC, MacManus-Driscoll JL, Jia Q (2009) Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv Mater 21:3794–3798CrossRefGoogle Scholar
  21. 21.
    Yang H, Wang H, Maiorov B et al (2009) Self-assembled multilayers and enhanced superconductivity in (Y Ba2Cu3O7–x)0.5: (BaZrO3)0.5 nanocomposite films. J Appl Phys 106:093914CrossRefGoogle Scholar
  22. 22.
    Cantoni C, Gao Y, Wee SH, Specht ED, Gazquez J, Meng J, Pennycook SJ, Goyal A (2011) Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5(6):4783–4789CrossRefGoogle Scholar
  23. 23.
    Murakami M, Fujino S, Lim S-H, Salamanca-Riba LG, Wuttig M, Takeuchi I, Varughese B, Sugaya H, Hasegawa T, Lofland SE (2006) Microstructure and phase control in Bi-Fe-O multiferroic nanocomposite thin films. Appl Phys Lett 88(11):112505CrossRefGoogle Scholar
  24. 24.
    Lange FF (1996) Chemical solution routes to single-crystal thin films. Science 273(5277):903–909CrossRefGoogle Scholar
  25. 25.
    Balcells L, Carrillo AE, Martinez B, Fontcuberta J (1999) Enhanced field sensitivity close to percolation in magnetoresistive La2/3Sr1/3MnO3/CeO2 composites. Appl Phys Lett 74(26):4014–4016CrossRefGoogle Scholar
  26. 26.
    Petrov DK, Krusin-Elbaum L, Sun JZ, Feild C, Duncombe PR (1999) Enhanced magnetoresistance in sintered granular manganite/insulator systems. Appl Phys Lett 75(7):995–997CrossRefGoogle Scholar
  27. 27.
    Kameli P, Salamati H, Eshraghi M, Mohammadizadeh MR (2005) The effect of TiO2 doping on the structure and magnetic and magnetotransport properties of La0.75Sr0.25MnO3 composite. J Appl Phys 98(4):043908CrossRefGoogle Scholar
  28. 28.
    Gaur A, Varma GD (2007) Electrical and magnetotransport properties of La07Sr033MnO3/TiO2 composites. Cryst Res Technol 42(2):164–168CrossRefGoogle Scholar
  29. 29.
    Miao JH, Yuan SL, Ren GM, Xiao X, Yu GQ, Wang YQ, Yin SY (2007) Electrical transport and magnetoresistance properties in (1–x)La2/3Ca1/3MnO3/xSb2O5 composites. Mater Sci Eng 136(1):67–71CrossRefGoogle Scholar
  30. 30.
    Miao JH, Yuan SL, Ren GM, Xiao X, Yu GQ, Wang YQ, Yin SY (2006) Enhancement of room temperature magnetoresistance in (1–x)La0.65Ca0.33MnO3/xSb2O5 composites. J Phys D: Appl Phys 39(14):2897–2901CrossRefGoogle Scholar
  31. 31.
    Kang BS, Wang H, Manus-Driscoll JL et al (2006) Low field magnetotransport properties of (La0.7Sr0.3MnO3)(0.5): (ZnO)(0.5) nanocomposite films. Appl Phys Lett 88(19): 192514–192516CrossRefGoogle Scholar
  32. 32.
    Lu WJ, Sun YP, Zhu XB, Song WH, Du JJ (2006) Low-field magnetoresistance in La0.8Sr0.2MnO3/ZrO2 composite system. Mater Lett 60(27):3207–3211CrossRefGoogle Scholar
  33. 33.
    Huang YH, Yan CH, Wang S, Luo F, Wang ZM, Liao CS, Xu GX (2001) Chemical synthesis of La0.7Sr0.3MnO3/silica homogeneous nanocomposites. J Mater Chem 11(12):3296–3299CrossRefGoogle Scholar
  34. 34.
    Yan L, Kong LB, Yang T, Goh WC, Tan CY, Ong CK, Rahman MA, Osipowicz T, Ren MQ (2004) Enhanced low field magnetoresistance of Al2O3–La0.7Sr0.3MnO3 composite thin films via a pulsed laser deposition. J Appl Phys 96(3):1568–1571CrossRefGoogle Scholar
  35. 35.
    De Andres A, Taboada S, Colino JM, Ramirez R, Garcia-Hernandez M, Martinez JL (2002) Low field magnetoresistance at the metal-insulator transition in epitaxial manganite thin films. Appl Phys Lett 81(2):319–321CrossRefGoogle Scholar
  36. 36.
    Valencia S, Castano O, Fontcuberta J, Martinez B, Balcells L (2003) Enhanced low field magnetoresistive response in (La2/3Sr1/3MnO3)(x)/(CeO2)(1–x) composite thick films prepared by screen printing. J Appl Phys 94(4):2524–2528CrossRefGoogle Scholar
  37. 37.
    Gil LK, Baca E, Moran O, Quinayas C, Bolanos G (2008) Influence of polyparaphenylene on the magnetotransport of manganite/polymer composites. Physica B 403(10–11):1813–1818CrossRefGoogle Scholar
  38. 38.
    Gupta S, Ranjit R, Mitra C, Raychaudhuri P, Pinto R (2001) Enhanced room-temperature magnetoresistance in La0.7Sr0.3MnO3 – glass composites. Appl Phys Lett 78(3):362364CrossRefGoogle Scholar
  39. 39.
    Shlyakhtin OA, Shin KH, Oh Y-J (2002) Enhancement of low field magnetoresistance by chemical interaction in bulk composites La0.7Sr0.3MnO3/SrMeO3 (Me = Ti, Zr). J Appl Phys 91:7403–7405CrossRefGoogle Scholar
  40. 40.
    Freitas JCC, Victor RA, Orlando MTD, Takeuchi AY, Oliveira IS, Bonagamba TJ (2008) Evidence for magnetic phase separation in La0.86Sr0.14Mn1–xCuxO3+δ; manganites from NMR and magnetic measurements. J Phys Condens Matter 20(9):095214CrossRefGoogle Scholar
  41. 41.
    Shim IB, Lee BW, Kim CS (2002) Influence of the indium oxide addition on low field magneto resistance behavior in the La2/3Sr1/3 MnO3 granular composite thin films. J Magn Magn Mater 239(1–3):279–281CrossRefGoogle Scholar
  42. 42.
    Eshraghi M, Salamati H, Kameli P (2007) The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite. J Alloys Compd 437(1–2):22–26CrossRefGoogle Scholar
  43. 43.
    Eshraghi M, Salamati H, Kameli P (2006) Structural, magnetic and transport properties of La0.8Sr0.2MnO3/xNiO composites. J Phys Condens Matter 18(35):8281–8294CrossRefGoogle Scholar
  44. 44.
    Gaur A, Varma GD (2006) Magnetoresistance behaviour of La0.7Sr0.3MnO3/NiO composites. Solid State Commun 139(6):310–314CrossRefGoogle Scholar
  45. 45.
    Koster SA, Moshnyaga V, Samwer K, Lebedev OI, van Tendeloo G, Shapoval O, Belenchuk A (2002) Doping of interfaces in (La0.7Sr0.3MnO3)1–x: (MgO)x composite films. Appl Phys Lett 81(9):1648–1650CrossRefGoogle Scholar
  46. 46.
    Liu JM, Yuan GL, Sang H, Wu ZC, Chen XY, Liu ZG, Du YW, Huang Q, Ong CK (2001) Low-field magnetoresistance in nanosized La0.7Sr0.3MnO3/Pr0.5Sr0.5MnO3 composites. Appl Phys Lett 78(8):1110–1112CrossRefGoogle Scholar
  47. 47.
    Yan CH, Luo F, Huang YH, Li XH, Wang ZM, Liao CS, Zhao HW, Shen BG (2002) Enhanced room temperature magnetoresistance in La0.7Sr0.3MnO3/Sm0.7Sr0.3MnO3 nanocomposites. J Appl Phys 91:7406–7408CrossRefGoogle Scholar
  48. 48.
    Dey P, Nath TK, Goswami MLN et al (2007) Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1–x)ErMnO3 (weight percent x = 0.1, 0.2) composites. Appl Phys Lett 90(16):162510–162512CrossRefGoogle Scholar
  49. 49.
    Huang Q, Li J, Huang XJ, Ong CK, Gao XS (2001) Effect of magnetic coupling on the magnetoresistive properties in La0.67Sr0.33MnO3/BaFe11.3(ZnSn)0.7O19 composites. J Appl Phys 90(6):2924–2929CrossRefGoogle Scholar
  50. 50.
    Salamon, Myron B, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73(3):583–628CrossRefGoogle Scholar
  51. 51.
    Molina L, Knoth K, Engel S, Holzapfel B, Eibl O (2006) Chemically deposited La2Zr2O7 buffer layers for YBCO-coated conductors: film growth and microstructure. Supercond Sci Technol 19:1200–1208CrossRefGoogle Scholar
  52. 52.
    Hytch MJ, Houdellier F (2007) Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron Eng 84(3):460–463CrossRefGoogle Scholar
  53. 53.
    Houdellier F, Hytch M, He F et al (2008) Aberration correction with the SACTEM-toulouse: from imaging to diffraction. In P Hawkes (ed) Advances in imaging and electron physics, vol 153, 1st edn. Academic/Elsevier, Boston, pp 225–259 (Chap 6).Google Scholar
  54. 54.
    Schwartz RW, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. C R Chimie 7(5):433–461CrossRefGoogle Scholar
  55. 55.
    Gibert M, Puig T, Obradors X (2007) Growth of strain-induced self-assembled BaZrO3 nanodots from chemical solutions. Surf Sci 601(13):2680–2683CrossRefGoogle Scholar
  56. 56.
    Obradors X, Puig T, Pomar A, Sandiumenge F, Piñol S, Mestres N, Castaño O, Coll M, Cavallaro A, Palau A, Gazquez J, Gonzalez JC, Gutierrez J, Roma N, Ricart S, Moreto JM, Rossell MD, van Tendeloo G (2004) Chemical solution deposition: a path towards low cost coated conductors. Supercond Sci Technol 17(8):1055CrossRefGoogle Scholar
  57. 57.
    Hasenkox U, Mitze C, Waser R, Arons RR, Pommer J, Guntherodt G (1999) Chemical solution deposition of epitaxial La1–x(Ca, Sr)xMnO3 thin films. J Electroceram 3(3):255–260CrossRefGoogle Scholar
  58. 58.
    Hassini A, Pomar A, Gutierrez J, Coll M, Roma N, Moreno C, Ruyter A, Puig T, Obradors X (2007) Atomically flat MOD La0.7Sr0.3MnO3 buffer layers for high critical current YBa2Cu3O7 TFA films. Supercond Sci Technol 20:S230CrossRefGoogle Scholar
  59. 59.
    Zabaleta J, Jaafar M, Abellan P, Monton C, Iglesias-Freire O, Sandiumenge F, Ramos CA, Zysler RD, Puig T, Asenjo A, Mestres N, Obradors X (2012) Nanoscale magnetic structure and properties of solution-derived self-assembled La0.7Sr0.3MnO3 islands. J Appl Phys 111, 024307 (2012)CrossRefGoogle Scholar
  60. 60.
    Castaño O, Cavallaro A, Palau A, Gonzalez JC, Rossell M, Puig T, Sandiumenge F, Mestres N, Piñol S, Pomar A, Obradors X (2002) High quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond Sci Technol 16(1):45–53CrossRefGoogle Scholar
  61. 61.
    Williams DB, Carter CB (1996/2009) Transmission electron microscopy, a textbook for materials science, 2nd edn. Springer, New YorkGoogle Scholar
  62. 62.
    Eberg E, Monsen AF, Tybell T, Van Helvoort ATJ, Holmestad R (2008) Comparison of TEM specimen preparation of perovskite thin films by tripod polishing and conventional ion milling. J Electron Microsc 57(6):175–179CrossRefGoogle Scholar
  63. 63.
    Hytch MJ, Putaux J-L, Penisson J-M (2003) Measurement of the displacement field of dislocations to 0.03 A by electron microscopy. Nature 423(6937):270–273CrossRefGoogle Scholar
  64. 64.
    Bierwolf R, Hohenstein H, Philipp F, Brandt O, Crook GE, Ploog K (1993) Direct measurement of local lattice distortions in strained layer structures by HREM. Ultramicroscopy 49(1–4):273–285CrossRefGoogle Scholar
  65. 65.
    Hytch MJ (1997) Analysis of variations in structure from high resolution electron microscope images by combining real space and Fourier space information. Microsc Microanal Microstruct 8(1):41–57CrossRefGoogle Scholar
  66. 66.
    Hirth JP, Lothe J (1992) Theory of dislocations, 2nd edn. Krieger, MalabarGoogle Scholar
  67. 67.
    Hytch MJ (2001) In: stress and strain in epitaxy: theoretical concepts measurements and applications. Elsevier, Amsterdam, p 201CrossRefGoogle Scholar
  68. 68.
    Rouviere J-L (2008) The use of the geometrical phase analysis to measure strain in nearly periodic images. In: 15th conference on microscopy of semiconducting, 2007, vol 120, p 199Google Scholar
  69. 69.
    Hytch MJ (2006) GPA for digital micrograph. GPA phase manual 1.0. HREM Research Inc. SaitamaGoogle Scholar
  70. 70.
    Roure P, Farjas J, Camps J, Ricart S, Arbiol J, Puig T, Obradors X (2011) Decomposition processes and structural transformations of cerium propionate into nanocrystalline ceria at different oxygen partial pressures. J Nanopart Res 13(9):4085–4096CrossRefGoogle Scholar
  71. 71.
    Thompson CV (1990) Grain growth in thin films. Annu Rev Mater Sci 20:245–268CrossRefGoogle Scholar
  72. 72.
    Schwartz RW (1997) Chemical solution deposition of perovskite thin films. Chem Mater 9(11):2325–2340CrossRefGoogle Scholar
  73. 73.
    Chen H, Zalamova K, Pomar A, Granados X, Puig T, Obradors X (2010) Nucleation and growth rate influence on microstructure and critical currents of TFA-YBa2Cu3O7 under low-pressure conditions. J Mater Res 25:2371–2379CrossRefGoogle Scholar
  74. 74.
    Gibert M, Abellan P, Martinez L, Roman E, Crespi A, Sandiumenge F, Puig T, Obradors X (2011) Orientation and shape selection of self-assembled epitaxial Ce1–xGdxO2–y nanostructures grown by chemical solution deposition. Cryst Eng Comm 13:6719–6727CrossRefGoogle Scholar
  75. 75.
    Zabaleta Llorens J (2012) Growth and advanced characterization of solution-derived nanoscale La0.7Sr0.3MnO3 heteroepitaxial systems. PhD thesis ICMAB-CSIC, Autonomous University of Barcelona, Physics Department, BellaterraGoogle Scholar
  76. 76.
    Haertling GH (1991) Plzt thin films prepared from acetate precursors. Ferroelectrics 116(1):51–63CrossRefGoogle Scholar
  77. 77.
    Mitome M, Bando Y, Golberg D, Kurushima K, Okura Y, Kaneyama T, Naruse M, Honda Y (2004) Nanoanalysis by a high-resolution energy filtering transmission electron microscope. Microsc Res Tech 63(3):140–148CrossRefGoogle Scholar
  78. 78.
    Walther T (2003) Electron energy-loss spectroscopic profiling of thin film structures: 0.39 nm line resolution and 0.04 eV precision measurement of near-edge structure shifts at interfaces. Ultramicroscopy 96(3–4):401–411CrossRefGoogle Scholar
  79. 79.
    Foex M (1961) Properties of some solid solutions and compounds with lanthanum oxide base. Bull Soc Chim France 1:109–117Google Scholar
  80. 80.
    JCPDS-International Centre for Diffraction Data (2001) Power diffraction files, JCPDS-ICDD Card Nos. 01-072-0893 (Sr3La4O9), 00-022-1430 (La4SrO7), 00-022-1431 (La2Sr2O5), 00-0420343 (La2SrOx) International Center for Diffraction Data, SwarthmoreGoogle Scholar
  81. 81.
    Nieminen M, Putkonen M, Niinist ö L (2001) Formation and stability of lanthanum oxide thin films deposited from ft-diketonate precursor. Appl Surf Sci 174:155–165CrossRefGoogle Scholar
  82. 82.
    Wilk GD, Wallace RM, Anthony JM (2001) High-k gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5254–5275CrossRefGoogle Scholar
  83. 83.
    Russell KC (1980) Nucleation in solids: the induction and steady state effects. Adv Coll Interf Sci 13:205–318CrossRefGoogle Scholar
  84. 84.
    Grundy AN, Hallstedt B, Gauckler LJ (2004) Assessment of the Sr-Mn-O system. J Phase Eq Diff 25(4):311–319CrossRefGoogle Scholar
  85. 85.
    Caignaert V, Nguyen N, Hervieu M, Raveau B (1985) Sr2Mn2O5, an oxygen-defect perovskite with Mn(III) in square pyramidal coordination. Mater Res Bull 20(5):479485CrossRefGoogle Scholar
  86. 86.
    Mori T, Inoue K, Kamegashira N, Yamaguchi Y, Ohoyama K (2000) Neutron diffraction study of Sr2Mn2O5. J Alloys Compd 296(1–2):92–97CrossRefGoogle Scholar
  87. 87.
    Kuroda K, Ishizawa N, Mizutani N, Kato M (1981) The crystal structure of a – SrMnO3. J Solid State Chem 38(3):297–299CrossRefGoogle Scholar
  88. 88.
    Battle PD, Gibb TC, Jones CW (1988) The structural and magnetic properties of SrMnO3: a reinvestigation. J Solid State Chem 74(1):60–66CrossRefGoogle Scholar
  89. 89.
    Tichi RS, Goodenough JB (2002) Oxygen permeation in cubic SrMnO3-δ. J Solid State Sci 4(5):661–664CrossRefGoogle Scholar
  90. 90.
    Negas T, Roth RS (1970) The system SrMnO3–x. J Solid State Chem 1(3–4):409–418CrossRefGoogle Scholar
  91. 91.
    Balz D, Plieth K (1955) The structure of potassium nickel fluoride, K2NiF4. Z Elektrochem 59(6):545–551Google Scholar
  92. 92.
    Tesuka K, Inamura M, Hinatsu Y, Shimojo Y, Morii Y (1999) Crystal structures and magnetic properties of Ca2–xSrxMnO4. J Solid State Chem 145(2):705–710CrossRefGoogle Scholar
  93. 93.
    Mizutani N, Kitazawa A, Ohkuma N, Kato M (1970) Synthesis of strontium-manganese double oxides. Kogyo Kagaky Zasshi 73(6):1097–1103CrossRefGoogle Scholar
  94. 94.
    Mitchell JF, Millburn JE, Medarde M, Short S, Jorgensen JD, Fernandez-Diaz MT (1998) Sr3Mn2O7: Mn4+ parent compound of the n = 2 Layered CMR manganites. J Solid State Chem 141(2):599–603CrossRefGoogle Scholar
  95. 95.
    Fabry J, Hybler J, Jirak Z, Jurek K, Maly K, Nevriva M, Petricek V (1988) Preparation and the crystal structure of a new manganate, Sr4Mn3O10. J Solid State Chem 73(2):520–523CrossRefGoogle Scholar
  96. 96.
    Floros N, Hervieu M, van Tendeloo G, Michel C, Maignan A, Raveau B (1998) The layered manganate Sr4–xBaxMn3O10: synthesis, structural and magnetic properties. J Solid State Sci 2(1):1–9CrossRefGoogle Scholar
  97. 97.
    Vente JF, Plaisier JR, Ijdo DJV, Kamenev KV (2000) Preparation and crystallographic properties of Sr7–x(Ca/Ba)xMn4O15. Mater Res Bull 35(14–15):2437–2444CrossRefGoogle Scholar
  98. 98.
    Negas T (1973) The SrMnO3–X – Mn3O4 system. J Solid State Chem 7(1):85–88CrossRefGoogle Scholar
  99. 99.
    Ruddlesden SN, Popper P (1985) The compound Sr3 Ti2O7 and its structure. Acta Crystallogr 11:54–55CrossRefGoogle Scholar
  100. 100.
    Seshadri R, Hervieu M, Martin C, Maignan A, Domenges B, Raveau B, Fitch A (1997) Study of the layered magnetoresistive perovskite La1.2Sr1.8Mn2O7 by high-resolution electron microscopy and synchrotron x-ray powder diffraction. Chem Mater 9(8):1778–1787CrossRefGoogle Scholar
  101. 101.
    Maurice J-L, Pailloux F, Barthelemy A, Durand O, Imhoff D, Lyonnett R, Rocher A, Contour J-P (2003) Strain relaxation in the epitaxy of La2/3Sr1/3MnO3 grown by pulsed-laser deposition on SrTiO3 (001). Philos Mag 83(28):3201–3224CrossRefGoogle Scholar
  102. 102.
    Lebedev OI, Van Tendeloo G, Amelinckx S, Hu HL, Krishnan KM (2000) High-resolution electron microscopy study of strained epitaxial La0.7Sr0.3MnO3 thin films. Philos Mag A 80(3):673–691CrossRefGoogle Scholar
  103. 103.
    Casanove M-J, Roucau C, Baules P, Majimel J, Ousset J-C, Magnoux D, Bobo J-F (2002) Growth and relaxation mechanisms in La0.66Sr0.33MnO3 manganites deposited on SrTiO3 (001) and MgO(0001). Appl Surf Sci 188(1–2):19–23CrossRefGoogle Scholar
  104. 104.
    Ranno L, Llobet A, Tiron R, Favre-Nicolin E (2002) Strain-induced magnetic anisotropy in epitaxial manganite films. Appl Surf Sci 188(1–2):170–175CrossRefGoogle Scholar
  105. 105.
    Brous J, Fankuchen I, Banks E (1953) Rare earth titanates with a perovskite structure. Acta Crystallogr 6:67–70CrossRefGoogle Scholar
  106. 106.
    Hammouche A, Siebert E, Hammou A (1989) Crystallographic, thermal and electrochemical properties of the system La1–xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater Res Bull 24(3):367–380CrossRefGoogle Scholar
  107. 107.
    Zhang M, Ma XL, Li DX, Lu HB, Chen ZH, Yang GZ (2005) Abnormal lattice expansion and double periodicity in La0.7Sr0.3MnO3 thin films under electron irradiation. J Mater Res 20(7):1778–1784CrossRefGoogle Scholar
  108. 108.
    Sutton AP, Balluf RW (1995) S: interfaces in crystalline materials. Clarendon, OxfordGoogle Scholar
  109. 109.
    Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A, Obradors X (2009) Anisotropic c-axis pinning in interfacial self-assembled nanostructured trifluoracetate- YBa2Cu3O7–x films. Appl Phys Lett 94(17):172513CrossRefGoogle Scholar
  110. 110.
    Moreno C, Munuera C, Valencia S, Kronast F, Obradors X, Ocal C (2010) Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett 10(10):3828–3835CrossRefGoogle Scholar
  111. 111.
    Gonzalez-Rovira L, Sanchez-Amaya JM, Lopez-Haro M, Hungria AB, Boukha Z, Bernal S, Botana FJ (2008) Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes. Nanotechnology 19(49):495305CrossRefGoogle Scholar
  112. 112.
    Moreno C, Munuera C, Perez del Pino A, Gutierrez J, Puig T, Ocal C, Obradors X, Ruyter A (2009) Absence of self-heated bistable resistivity in La0.7Sr0.3MnO3 films up to high current densities. Phys Rev B 80(9):094412CrossRefGoogle Scholar
  113. 113.
    Butler EP, Hale KF (1981) Dynamic experiments in the electron microscope, vol 9. North-Holland, AmsterdamGoogle Scholar
  114. 114.
    Creemer JF, Helveg S, Hoveling GH, Ullmann S, Molenbroek AM, Sarro PM, Zandbergen HW (2008) Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108(9):993–998CrossRefGoogle Scholar
  115. 115.
    Mehraeen S, Mackeown JT, Deshmukh PV, Evans JE, Abellan P, Xu P, Reed BW, Taheri ML, Fischione PE, Browning ND (2013) A (S)TEM gas cell holder with localized laser heating for in-situ experiments. Microsc Microanal 19:470–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patricia Abellán
    • 1
    Email author
  • César Moreno
    • 2
  • Felip Sandiumenge
    • 3
  • Xavier Obradors
    • 3
  1. 1.Physical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.International Center for Young ScientistNational Institute for Materials ScienceTsukubaJapan
  3. 3.Institut de Ciencia de Materials de Barcelona, CSICBellaterraSpain

Personalised recommendations