Electron Microscopy for Characterization of Thermoelectric Nanomaterials

  • Haijun Wu
  • Jiaqing HeEmail author


Thermoelectric (TE) materials, capable of scavenging electric power from sources of waste heat, are currently receiving significant attention as a part of the search for sustainable energy sources. Most state-of-the-art TE materials are characterized with various microstructural features from fine grains, dispersed nanoprecipitates, to atomic-scale lattice disorder, accompanying strains around above various defects. These microstructural features are essential for understanding the mechanism and also powerful guides to exploit new TE materials with higher performance and lower cost. Recently, the electron microscopy has evolved into a powerful analytical tool to provide micro-/nano-/atomic-scale information of TE materials. Thus we mainly review the application of various electron microscopy technologies in PbTe-based TE materials in this chapter.


HRTEM Image Misfit Dislocation Dislocation Core Atom Probe Tomography Spark Plasma Sinter Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hytch MJ, Putaux J-L, Penisson J-M (2003) Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423(6937):270–273CrossRefGoogle Scholar
  2. 2.
    Hÿtch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3):131–146CrossRefGoogle Scholar
  3. 3.
    Hytch MJ (1997) Analysis of variations in structure from high resolution electron microscope images by combining real space and Fourier space information. Microsc Microanal Microstruct 8(1):41–58CrossRefGoogle Scholar
  4. 4.
    Johnson CL et al (2008) Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat Mater 7(2):120–124CrossRefGoogle Scholar
  5. 5.
    Johnson CL, Hÿtch MJ, Buseck PR (2004) Nanoscale waviness of low-angle grain boundaries. Proc Natl Acad Sci USA 101(52):17936–17939CrossRefGoogle Scholar
  6. 6.
    Hüe F et al (2008) Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy. Phys Rev Lett 100(15):156602CrossRefGoogle Scholar
  7. 7.
    Muller EW, Panitz JA, McLane SB (1968) The atom‐probe field ion microscope. Rev Sci Instrum 39(1):83–86CrossRefGoogle Scholar
  8. 8.
    Tsong T (1990) Atom probe field ion microscopy. Field emission, and surfaces and interfaces at atomic resolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Seidman DN, Stiller K (2009) An atom-probe tomography primer. MRS Bull 34(10):717–724CrossRefGoogle Scholar
  10. 10.
    Miller MK, Forbes R (2009) Atom probe tomography. Mater Charact 60(6):461–469CrossRefGoogle Scholar
  11. 11.
    Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158CrossRefGoogle Scholar
  12. 12.
    Kelly TF et al (2007) Atom probe tomography of electronic materials. Annu Rev Mater Res 37:681–727CrossRefGoogle Scholar
  13. 13.
    Gault B et al (2010) High-resolution nanostructural investigation of Zn4Sb3 alloys. Scr Mater 63(7):784–787CrossRefGoogle Scholar
  14. 14.
    World, E.B.f., IEC/OECD, 2008Google Scholar
  15. 15.
  16. 16.
    Liu W-S et al (2011) Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 1(4):577–587CrossRefGoogle Scholar
  17. 17.
    Poudel B et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876):634–638CrossRefGoogle Scholar
  18. 18.
    Venkatasubramanian R et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602CrossRefGoogle Scholar
  19. 19.
    Wang XW et al (2008) Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett 93(19):193121–193123CrossRefGoogle Scholar
  20. 20.
    Joshi G et al (2008) Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett 8(12):4670–4674CrossRefGoogle Scholar
  21. 21.
    Goldsmid HJ, Douglas RW (1954) The use of semiconductors in thermoelectric refrigeration. Br J Appl Phys 5(11):386CrossRefGoogle Scholar
  22. 22.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114CrossRefGoogle Scholar
  23. 23.
    Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FLGoogle Scholar
  24. 24.
    Zhu GH et al (2009) Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys Rev Lett 102(19):196803CrossRefGoogle Scholar
  25. 25.
    Yu B et al (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12(4):2077–2082CrossRefGoogle Scholar
  26. 26.
    Bux SK et al (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater 19(15):2445–2452CrossRefGoogle Scholar
  27. 27.
    Heikes RR, Ure RW (1961) Thermoelectricity: science and engineering. Interscience, New YorkGoogle Scholar
  28. 28.
    Heremans JP et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888):554–557CrossRefGoogle Scholar
  29. 29.
    Hsu KF et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821CrossRefGoogle Scholar
  30. 30.
    Zhou M, Li J-F, Kita T (2008) Nanostructured AgPbmSbTe2+m system bulk materials with enhanced thermoelectric performance. J Am Chem Soc 130(13):4527–4532CrossRefGoogle Scholar
  31. 31.
    Androulakis J et al (2007) Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe-PbS. J Am Chem Soc 129(31):9780–9788CrossRefGoogle Scholar
  32. 32.
    Ahn K et al (2010) Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. J Am Chem Soc 132(14):5227–5235CrossRefGoogle Scholar
  33. 33.
    Girard SN et al (2010) In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Lett 10(8):2825–2831CrossRefGoogle Scholar
  34. 34.
    Sootsman JR et al (2010) Microstructure and thermoelectric properties of mechanically robust PbTe-Si eutectic composites. Chem Mater 22(3):869–875CrossRefGoogle Scholar
  35. 35.
    Sootsman JR et al (2009) High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTe-Ge and PbTe-Ge1-xSix eutectic and hypereutectic composites. J Appl Phys 105(8):083718CrossRefGoogle Scholar
  36. 36.
    Pei Y et al (2011) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater 21(2):241–249CrossRefGoogle Scholar
  37. 37.
    Androulakis J et al (2006) Nanostructuring and high thermoelectric efficiency in p-Type Ag(Pb1 – ySny)mSbTe2 + m. Adv Mater 18(9):1170–1173CrossRefGoogle Scholar
  38. 38.
    Pei Y et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345):66–69CrossRefGoogle Scholar
  39. 39.
    Poudeu PFP et al (2006) High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−xPbmSbyTem+2. Angew Chem Int Ed 45(23):3835–3839CrossRefGoogle Scholar
  40. 40.
    Ohta M et al (2012) Enhancement of thermoelectric figure of merit by the insertion of MgTe nanostructures in p‐type PbTe doped with Na2Te. Adv Energy Mater 2(9):1117–1123CrossRefGoogle Scholar
  41. 41.
    Biswas K et al (2011) High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M = Ca, Ba). Energy Environ Sci 4(11):4675–4684CrossRefGoogle Scholar
  42. 42.
    Biswas K et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416):414–418CrossRefGoogle Scholar
  43. 43.
    Biswas K et al (2011) Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat Chem 3(2):160–166CrossRefGoogle Scholar
  44. 44.
    Lo S-H et al (2012) Phonon scattering and thermal conductivity in p-Type nanostructured PbTe-BaTe bulk thermoelectric materials. Adv Funct Mater 22(24):5175–5184CrossRefGoogle Scholar
  45. 45.
    He J et al (2010) Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Adv Funct Mater 20(5):764–772CrossRefGoogle Scholar
  46. 46.
    He J et al (2012) Morphology control of nanostructures: Na-doped PbTe-PbS system. Nano Lett 12(11):5979–5984CrossRefGoogle Scholar
  47. 47.
    Girard SN et al (2011) High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc 133(41):16588–16597CrossRefGoogle Scholar
  48. 48.
    He J et al (2012) Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv Mater 24(32):4440–4444CrossRefGoogle Scholar
  49. 49.
    Girard SN et al (2012) PbTe-PbSnS2 thermoelectric composites: low lattice thermal conductivity from large microstructures. Energy Environ Sci 5(9):8716–8725CrossRefGoogle Scholar
  50. 50.
    Androulakis J et al (2011) Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. J Am Chem Soc 133(28):10920–10927CrossRefGoogle Scholar
  51. 51.
    Johnsen S et al (2011) Nanostructures boost the thermoelectric performance of PbS. J Am Chem Soc 133(10):3460–3470CrossRefGoogle Scholar
  52. 52.
    Androulakis J et al (2011) High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb. Phys Rev B 83(19):195209CrossRefGoogle Scholar
  53. 53.
    Parker D, Singh DJ (2010) High-temperature thermoelectric performance of heavily doped PbSe. Phys Rev B 82(3):035204CrossRefGoogle Scholar
  54. 54.
    Hu Z, Gao S (2008) Upper crustal abundances of trace elements: a revision and update. Chem Geol 253(3–4):205–221CrossRefGoogle Scholar
  55. 55.
    Madelung O (2004) Semiconductors: data handbook. Springer, Berlin, Vol. 3CrossRefGoogle Scholar
  56. 56.
    Scanlon WW (1959) Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys. J Phys Chem Solids 8:423–428CrossRefGoogle Scholar
  57. 57.
    Mahan GD (1997) Good thermoelectrics. In: Henry E, Frans S (eds) Solid state physics. Academic Press, Elsevier B.V., pp 81–157Google Scholar
  58. 58.
    Zhao L-D et al (2011) High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc 133(50):20476–20487CrossRefGoogle Scholar
  59. 59.
    Zhao L-D et al (2012) Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. J Am Chem Soc 134(18):7902–7912CrossRefGoogle Scholar
  60. 60.
    Cox PA (1989) The elements. Their origin, abundance, and distribution. The elements. Their origin, abundance, and distribution. Oxford University Press, Oxford, UK, 8+ 207 p, ISBN 0-19-855298-X, Price£ 9.95 (paper). ISBN 0-19-855275-0, Price£ 25.00 (cloth). 1989Google Scholar
  61. 61.
    Zhao L-D et al (2012) Raising the thermoelectric performance of p-Type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc 134(39):16327–16336CrossRefGoogle Scholar
  62. 62.
    Guo J et al (2012) Development of skutterudite thermoelectric materials and modules. J Elec Materi 41(6):1–7CrossRefGoogle Scholar
  63. 63.
    Joshi G et al (2012) Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75−xTixZr0.25NiSn0.99Sb0.01. Nano Energ 2(1):82–87CrossRefGoogle Scholar
  64. 64.
    Ibáñez M et al (2012) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem Mater 24(3):562–570CrossRefGoogle Scholar
  65. 65.
    Snyder GJ et al (2004) Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3(7):458–463CrossRefGoogle Scholar
  66. 66.
    Li J et al (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5(9):8543–8547CrossRefGoogle Scholar
  67. 67.
    Liu Y et al (2005) Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by Spark Plasma Sintering. J Am Ceram Soc 88(5):1337–1340CrossRefGoogle Scholar
  68. 68.
    Van Nong N et al (2011) Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv Mater 23(21):2484–2490CrossRefGoogle Scholar
  69. 69.
    Flahaut D et al (2006) Thermoelectrical properties of Ca1-xReMnO3 system. J Appl Phys 100(8):084911-084911-4CrossRefGoogle Scholar
  70. 70.
    Bérardan D et al (2008) Ge, a promising n-type thermoelectric oxide composite. Solid State Commun 146(1):97–101CrossRefGoogle Scholar
  71. 71.
    Hiramatsu H et al (2007) Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): effects of electronic configurations of M3+ ions. Chem Mater 20(1):326–334CrossRefGoogle Scholar
  72. 72.
    Liu Y et al (2011) Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc 133(50):20112–20115CrossRefGoogle Scholar
  73. 73.
    Zhao LD et al (2010) Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 97(9):092118-3CrossRefGoogle Scholar
  74. 74.
    Liu J et al (2009) Enhancement of thermoelectric efficiency in oxygen-deficient Sr1-xLaxTiO3-δ ceramics. Appl Phys Lett 95(16):162110-3CrossRefGoogle Scholar
  75. 75.
    Shikano M, Funahashi R (2003) Electrical and thermal properties of single-crystalline (CaCoO) CoO with a CaCoO structure. Appl Phys Lett 82:1851CrossRefGoogle Scholar
  76. 76.
    Seebeck TJ (1822) AAWB 289Google Scholar
  77. 77.
    Peltier JC (1834) ACL 371Google Scholar
  78. 78.
    Biswas K et al (2011) High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba). Energy Environ Sci 4(11):4675–4684CrossRefGoogle Scholar
  79. 79.
    Ohta M et al (2012) Enhancement of thermoelectric figure of merit by the insertion of MgTe nanostructures in p-type PbTe doped with Na2Te. Adv Energy Mater 2(9):1117–1123CrossRefGoogle Scholar
  80. 80.
    Zhao LD, Hao HJWS, Wu C, Zhou X, Biswas K, Ohta M, He JQ, Hogan TP, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2012) Synergistic band structure tailoring and all-scale hierarchical structuring for high performance thermoelectrics (to be submitted)Google Scholar
  81. 81.
    Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B 70(11):115334CrossRefGoogle Scholar
  82. 82.
    Shi X et al (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133(20):7837–7846CrossRefGoogle Scholar
  83. 83.
    He J et al (2012) Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett 12(1):343–347CrossRefGoogle Scholar
  84. 84.
    Blum ID et al (2012) Dopant distributions in PbTe-based thermoelectric materials. J Elec Materi 41(6):1583–1588CrossRefGoogle Scholar
  85. 85.
    He J et al (2011) Anomalous electronic transport in dual-nanostructured lead telluride. J Am Chem Soc 133(23):8786–8789CrossRefGoogle Scholar
  86. 86.
    He J et al (2010) On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. J Am Chem Soc 132(25):8669–8675CrossRefGoogle Scholar
  87. 87.
    Yang SH et al (2008) Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials. Nanotechnology 19(24):245707CrossRefGoogle Scholar
  88. 88.
    Wu J et al (2011) Electron-beam activated thermal sputtering of thermoelectric materials. J Appl Phys 110(4):044325Google Scholar
  89. 89.
    Gueguen A et al (2009) Thermoelectric properties and nanostructuring in the p-Type materials NaPb18-xSnxMTe20 (M = Sb, Bi). Chem Mater 21(8):1683–1694CrossRefGoogle Scholar
  90. 90.
    He J et al (2009) Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb18-xSnxBiTe20 thermoelectric materials. J Am Chem Soc 131(49):17828–17835CrossRefGoogle Scholar
  91. 91.
    Sugar J, Medlin D (2011) Solid-state precipitation of stable and metastable layered compounds in thermoelectric AgSbTe2. J Mater Sci 46(6):1668–1679CrossRefGoogle Scholar
  92. 92.
    Solymar L, Walsh D (2010) Electrical properties of materials. Oxford University Press, USAGoogle Scholar
  93. 93.
    Ravich IUI, Efimova BA, Smirnov IA (1970) Semiconducting lead chalcogenides, vol 5. Plenum Press, New YorkGoogle Scholar
  94. 94.
    Goldsmid HJ (1964) Thermoelectric refrigeration, vol 1. Plenum, New YorkCrossRefGoogle Scholar
  95. 95.
    Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New YorkGoogle Scholar
  96. 96.
    Hayashi K, Kitakaze A, Sugaki A (2001) A re-examination of herzenbergite-teallite solid solution at temperatures between 300 and 700 °C. Mineral Mag 65(5):645–651CrossRefGoogle Scholar
  97. 97.
    He J et al (2006) Geometric shadowing from rippled SrRuO3/SrTiO3 surface templates induces self-organization of epitaxial SrZrO3 nanowires. Phys Rev B 74(20):205410CrossRefGoogle Scholar
  98. 98.
    Quarez E et al (2005) Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J Am Chem Soc 127(25):9177–9190CrossRefGoogle Scholar
  99. 99.
    Androulakis J et al (2006) Coexistence of large thermopower and degenerate doping in the nanostructured material Ag0.85SnSb1.15Te3. Chem Mater 18(20):4719–4721CrossRefGoogle Scholar
  100. 100.
    D S.E.a.T (1976) US patent specification 3 945 855Google Scholar
  101. 101.
    Christakudis CC, Plachkova SK, Shelimova LE, Avilov ES (1989) Proceedings of 8th international conference on thermoelectric energy conversion, Nancy, France, July 1989, p 125Google Scholar
  102. 102.
    Cook B et al (2007) In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85. J Mater Sci 42(18):7643–7646CrossRefGoogle Scholar
  103. 103.
    Cook BA et al (2007) Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. J Appl Phys 101(5):053715–053716CrossRefGoogle Scholar
  104. 104.
    Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459CrossRefGoogle Scholar
  105. 105.
    Ioffe AF (1956) Semiconductor thermoelements, and thermoelectric cooling. Infosearch, Ltd., London, EnglandGoogle Scholar
  106. 106.
    Orihashi M et al (2000) Effect of tin content on thermoelectric properties of p-type lead tin telluride. J Phys Chem Solids 61(6):919–923CrossRefGoogle Scholar
  107. 107.
    Wu L et al (2009) Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal. J Appl Phys 105(9):094317–094318CrossRefGoogle Scholar
  108. 108.
    Gelbstein Y et al (2008) Mechanical properties of PbTe-based thermoelectric semiconductors. Scr Mater 58(4):251–254CrossRefGoogle Scholar
  109. 109.
    Ikeda T et al (2007) Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem Mater 19(4):763–767CrossRefGoogle Scholar
  110. 110.
    Ikeda T et al (2007) Solidification processing of alloys in the pseudo-binary PbTe–Sb2Te3 system. Acta Mater 55(4):1227–1239CrossRefGoogle Scholar
  111. 111.
    Ikeda T et al (2007) Development and evolution of nanostructure in bulk thermoelectric Pb-Te-Sb alloys. J Electron Mater 36(7):716–720CrossRefGoogle Scholar
  112. 112.
    Ikeda T, Ravi VA, Snyder GJ (2009) Formation of Sb2Te3 widmanstätten precipitates in thermoelectric PbTe. Acta Mater 57(3):666–672CrossRefGoogle Scholar
  113. 113.
    Heinz NA et al (2011) Interfacial disconnections at Sb2Te3 precipitates in PbTe: mechanisms of strain accommodation and phase transformation at a tetradymite/rocksalt telluride interface. Acta Mater 59(20):7724–7735CrossRefGoogle Scholar
  114. 114.
    Liu W et al (2012) Recent advances in thermoelectric nanocomposites. Nano Energ 1(1):42–56CrossRefGoogle Scholar
  115. 115.
    Zebarjadi M et al (2011) Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett 11(6):2225–2230CrossRefGoogle Scholar
  116. 116.
    Zhang Y et al (2011) Nanodopant-induced band modulation in AgPbmSbTe2+m-type thermoelectrics. Phys Rev Lett 106(20):206601CrossRefGoogle Scholar
  117. 117.
    Yan X et al (2010) Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett 10(9):3373–3378CrossRefGoogle Scholar
  118. 118.
    He Y et al (2011) Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5(3):1839–1844CrossRefGoogle Scholar
  119. 119.
    Tang J et al (2010) Holey silicon as an efficient thermoelectric material. Nano Lett 10(10):4279–4283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations