Skip to main content

TEM Characterization of Biological and Inorganic Nanocomposites

  • Chapter
  • First Online:
Transmission Electron Microscopy Characterization of Nanomaterials
  • 4423 Accesses

Abstract

Transmission electron microscopy (TEM) is a microscopy technique that employs a beam of high-energy electrons to transmit through a specimen of nanometer thickness. Information on the various aspects of a specimen, including but not limited to materials size, shape, crystallinity, composition, and elemental mapping, can be collected during the interaction of the electron beam with the specimen. This chapter presents an overview of the recent applications of TEM in characterizing biological and inorganic nanocomposites.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-38934-4_15

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-38934-4_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sigel A, Sigel H, Sigel RKO (eds) (2008) Biomineralization: from nature to application. Wiley, Chichester

    Google Scholar 

  2. Bonucci E (1992) Calcification in biological systems. CRC Press, Boca Raton

    Google Scholar 

  3. Cuif JP, Dauphin Y, Sorauf JE (eds) (2010) Biominerals and fossils through time. Cambridge University Press, Cambridge

    Google Scholar 

  4. Driessens FCM, Verbeeck RK (1990) Biominerals. CRC Press, Boca Raton

    Google Scholar 

  5. Weiner S, Wagner HD (1998) The material bone: structure mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  6. Cressey BA, Cressey G (2003) A model for the composite nanostructure of bone suggested by high-resolution transmission electron microscopy. Mineral Mag 67(6):1171–1182

    Article  CAS  Google Scholar 

  7. McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of Ion-milled sections. PLoS One 7(1)

    Google Scholar 

  8. Deshpande AS, Fang PA, Simmer JP, Margolis HC, Beniash E (2010) Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro. J Biol Chem 285(25):19277–19287

    Article  CAS  Google Scholar 

  9. Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H, Brylka LJ et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009

    Article  CAS  Google Scholar 

  10. Wang Y, Azais T, Robin M, Vallee A, Catania C, Legriel P et al (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11(8):724–733

    Article  CAS  Google Scholar 

  11. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108(11):4670–4693

    Article  CAS  Google Scholar 

  12. Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33(3):270–282

    Article  Google Scholar 

  13. Suvorova EI, Petrenko PP, Buffat PA (2007) Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning 29(4):162–170

    Article  CAS  Google Scholar 

  14. Wang XM, Cui FZ, Ge J, Wang Y (2004) Hierarchical structural comparisons of bones from wild-type and liliput(dtc232) gene-mutated zebrafish. J Struct Biol 145(3):236–245

    Article  CAS  Google Scholar 

  15. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Microstructure, mechanical, and biomimetic properties of fish scales from pagrus major. J Struct Biol 142(3):327–333

    Article  Google Scholar 

  16. Okuda M, Ogawa N, Takeguchi M, Hashimoto A, Tagaya M, Chen S et al (2011) Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography. Microsc Microanal 17(5):788–798

    Article  CAS  Google Scholar 

  17. Okuda M, Takeguchi M, Tagaya M, Tonegawa T, Hashimoto A, Hanagata N et al (2009) Elemental distribution analysis of type I collagen fibrils in tilapia fish scale with energy-filtered transmission electron microscope. Micron 40(5–6):665–668

    Article  CAS  Google Scholar 

  18. Sun JY, Bhushan B (2012) Hierarchical structure and mechanical properties of nacre: a review. RSC Adv 2(20):7617–7632

    Article  CAS  Google Scholar 

  19. Zhang XA, Wu WJ, Wang JF (2007) Dynamic analysis of preferential orientation of aragonite crystals in nacre from mollusk shell. Chin Sci Bull 52(24):3452–3456

    Article  CAS  Google Scholar 

  20. Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA 102(36):12653–12655

    Article  CAS  Google Scholar 

  21. Wang RZ, Gupta HS (2011) Deformation and fracture mechanisms of bone and nacre. Ann Rev Mater Res 41:41–73

    Article  CAS  Google Scholar 

  22. Huang ZW, Li HZ, Pan ZL, Wei QM, Chao YJ, Li XD (2011) Uncovering high-strain rate protection mechanism in nacre. Sci Rep 1

    Google Scholar 

  23. Song F, Zhang XH, Bai YL (2002) Microstructure and characteristics in the organic matrix layers of nacre. J Mater Res 17(7):1567–1570

    Article  CAS  Google Scholar 

  24. Song F, Soh AK, Bai YL (2003) Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24(20):3623–3631

    Article  CAS  Google Scholar 

  25. Rousseau M, Lopez E, Stempfle P, Brendle M, Franke L, Guette A et al (2005) Multiscale structure of sheet nacre. Biomaterials 26(31):6254–6262

    Article  CAS  Google Scholar 

  26. Su X, Kamat S, Heuer AH (2000) The structure of sea urchin spines, large biogenic single crystals of calcite. J Mater Sci 35(22):5545–5551

    Article  CAS  Google Scholar 

  27. Moureaux C, Perez-Huerta A, Compere P, Zhu W, Leloup T, Cusack M et al (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170(1):41–49

    Article  CAS  Google Scholar 

  28. Magdans U, Gies H (2004) Single crystal structure analysis of sea urchin spine calcites: systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur J Mineral 16(2):261–268

    Article  CAS  Google Scholar 

  29. Seto J, Ma YR, Davis SA, Meldrum F, Gourrier A, Kim YY et al (2012) Structure–property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci USA 109(10):3699–3704

    Article  CAS  Google Scholar 

  30. Robach JS, Stock SR, Veis A (2005) Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. J Struct Biol 151(1):18–29

    Article  CAS  Google Scholar 

  31. Asada R, Tazaki K (2001) Silica biomineralization of unicellular microbes under strongly acidic conditions. Can Mineral 39:1–16

    Article  CAS  Google Scholar 

  32. Foissner W, Weissenbacher B, Krautgartner WD, Lutz-Meindl U (2009) A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). J Eukaryot Microbiol 56(6):519–530

    Article  CAS  Google Scholar 

  33. Foissner W (2009) The stunning, glass-covered resting cyst of Maryna umbrellata (Ciliophora, Colpodea). Acta Protozool 48(3):223–243

    CAS  Google Scholar 

  34. Lins U, Barros CF, da Cunha M, Miguens FC (2002) Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma 220(1–2):89–96

    Article  CAS  Google Scholar 

  35. Stonik IV, Orlova TY, Lundholm N (2011) Diversity of pseudo-nitzschia H. Peragallo from the western North Pacific. Diatom Res 26(1–2):121–134

    Article  Google Scholar 

  36. Vrieling EG, Sun QY, Tian M, Kooyman PJ, Gieskes WWC, van Santen RA et al (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci USA 104(25):10441–10446

    Article  CAS  Google Scholar 

  37. Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S et al (2005) The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 57(4):1101–1112

    Article  CAS  Google Scholar 

  38. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3(1):63–78

    Article  CAS  Google Scholar 

  39. Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44(18):6393–6400

    Article  CAS  Google Scholar 

  40. Hennequin B, Turyanska L, Ben T, Beltran AM, Molina SI, Li M et al (2008) Aqueous near-infrared fluorescent composites based on apoferritin-encapsulated PbS quantum dots. Adv Mater 20(19):3592–+

    Article  CAS  Google Scholar 

  41. Kim H, Pippel E, Gosele U, Knez M (2009) Titania nanostructures fabricated by atomic layer deposition using spherical protein cages. Langmuir 25(23):13284–13289

    Article  CAS  Google Scholar 

  42. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  CAS  Google Scholar 

  43. Meegan JE, Aggeli A, Boden N, Brydson R, Brown AP, Carrick L et al (2004) Designed self-assembled beta-sheet peptide fibrils as templates for silica nanotubes. Adv Funct Mater 14(1):31–37

    Article  CAS  Google Scholar 

  44. Ono Y, Kanekiyo Y, Inoue K, Hojo J, Nango M, Shinkai S (1999) Preparation of novel hollow fiber silica using collagen fibers as a template. Chem Lett 6:475–476

    Article  Google Scholar 

  45. Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16(16):3085–3090

    Article  CAS  Google Scholar 

  46. Perham RN, Wilson TM (1978) The characterization of intermediates formed during the disassembly of tobacco mosaic virus at alkaline pH. Virology 84(2):293–302

    Article  CAS  Google Scholar 

  47. Niu Z, Liu J, Lee LA, Bruckman MA, Zhao D, Koley G et al (2007) Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett 7(12):3729–3733

    Article  CAS  Google Scholar 

  48. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–+

    Article  CAS  Google Scholar 

  49. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417

    Article  CAS  Google Scholar 

  50. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP et al (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14(2):116–124

    Article  CAS  Google Scholar 

  51. Rong JH, Niu ZW, Lee LA, Wang Q (2011) Self-assembly of viral particles. Curr Opin Colloid Interface Sci 16(6):441–450

    Article  CAS  Google Scholar 

  52. Niu Z, Bruckman M, Kotakadi VS, He J, Emrick T, Russell TP et al (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun 28:3019–3021

    Article  CAS  Google Scholar 

  53. Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24(3):906–912

    Article  CAS  Google Scholar 

  54. Chen XL, Gerasopoulos K, Guo JC, Brown A, Wang CS, Ghodssi R et al (2010) Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4(9):5366–5372

    Article  CAS  Google Scholar 

  55. Gerasopoulos K, McCarthy M, Banerjee P, Fan X, Culver JN, Ghodssi R (2010) Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnology 21(5)

    Google Scholar 

  56. Chen XL, Gerasopoulos K, Guo JC, Brown A, Wang CS, Ghodssi R et al (2011) A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater 21(2):380–387

    Article  CAS  Google Scholar 

  57. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E et al (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3(8):1079–1082

    Article  CAS  Google Scholar 

  58. Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I (2007) Synthesis of CoPt and FePt3 nanowires using the central channel of tobacco mosaic virus as a biotemplate. Chem Mater 19(10):2389–2391

    Article  CAS  Google Scholar 

  59. Huang WZ, Petrosino J, Palzkill T (1998) Display of functional beta-lactamase inhibitory protein on the surface of M13 bacteriophage. Antimicrob Agents Chemother 42(11):2893–2897

    CAS  Google Scholar 

  60. Lee SK, Yun DS, Belcher AM (2006) Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules 7(1):14–17

    Article  CAS  Google Scholar 

  61. Nam KT, Wartena R, Yoo PJ, Liau FW, Lee YJ, Chiang YM et al (2008) Stamped microbattery electrodes based on self-assembled M13 viruses. Proc Natl Acad Sci USA 105(45):17227–17231

    Article  CAS  Google Scholar 

  62. Hufton SE, Moerkerk PT, Meulemans EV, de Bruine A, Arends JW, Hoogenboom HR (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231(1–2):39–51

    Article  CAS  Google Scholar 

  63. Gao CS, Mao SL, Kaufmann G, Wirsching P, Lerner RA, Janda KD (2002) A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci USA 99(20):12612–12616

    Article  CAS  Google Scholar 

  64. Lee YJ, Yi H, Kim WJ, Kang K, Yun DS, Strano MS et al (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324(5930):1051–1055

    CAS  Google Scholar 

  65. Chen LM, Zurita AJ, Ardelt PU, Giordano RJ, Arap W, Pasqualini R (2004) Design and validation of a bifunctional ligand display system for receptor targeting. Chem Biol 11(8):1081–1091

    Article  CAS  Google Scholar 

  66. Lee YJ, Lee Y, Oh D, Chen T, Ceder G, Belcher AM (2010) Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes. Nano Lett 10(7):2433–2440

    Article  CAS  Google Scholar 

  67. Nam KT, Peelle BR, Lee SW, Belcher AM (2004) Genetically driven assembly of nanorings based on the M13 virus. Nano Lett 4(1):23–27

    Article  CAS  Google Scholar 

  68. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172

    Article  CAS  Google Scholar 

  69. Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H et al (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide – the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv Mater 17(21):2571–+

    Article  CAS  Google Scholar 

  70. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405(6787):665–668

    Article  CAS  Google Scholar 

  71. Mao CB, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A et al (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217

    Article  CAS  Google Scholar 

  72. Nam YS, Magyar AP, Lee D, Kim JW, Yun DS, Park H et al (2010) Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat Nanotechnol 5(5):340–344

    Article  CAS  Google Scholar 

  73. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888

    Article  CAS  Google Scholar 

  74. Mao CB, Liu AH, Cao BR (2009) Virus-based chemical and biological sensing. Angew Chem Int Ed 48(37):6790–6810

    Article  CAS  Google Scholar 

  75. Niu ZW, Bruckman MA, Harp B, Mello CM, Wang Q (2008) Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Res 1(3):235–241

    Article  CAS  Google Scholar 

  76. Neltner B, Peddie B, Xu A, Doenlen W, Durand K, Yun DS et al (2010) Production of hydrogen using nanocrystalline protein-templated catalysts on M13 phage. ACS Nano 4(6):3227–3235

    Article  CAS  Google Scholar 

  77. Westerlund-Wikstrom B, Tanskanen J, Virkola R, Hacker J, Lindberg M, Skurnik M et al (1997) Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Eng 10(11):1319–1326

    Article  CAS  Google Scholar 

  78. Iannolo G, Minenkova O, Petruzzelli R, Cesareni G (1995) Modifying filamentous phage capsid – limits in the size of the major capsid protein. J Mol Biol 248(4):835–844

    Article  CAS  Google Scholar 

  79. Malik P, Tarry TD, Gowda LR, Langara A, Petukhov SA, Symmons MF et al (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260(1):9–21

    Article  CAS  Google Scholar 

  80. Petrenko VA, Smith GP, Gong X, Quinn T (1996) A library of organic landscapes on filamentous phage. Protein Eng 9(9):797–801

    Article  CAS  Google Scholar 

  81. Kumara MT, Tripp BC, Muralidharan S (2007) Exciton energy transfer in self-assembled quantum dots on bioengineered bacterial flagella nanotubes. J Phys Chem C 111(14):5276–5280

    Article  CAS  Google Scholar 

  82. Kumara MT, Tripp BC, Muralidharan S (2007) Self-assembly of metal nanoparticles and nanotubes on bioengineered flagella scaffolds. Chem Mater 19(8):2056–2064

    Article  CAS  Google Scholar 

  83. Asakura S (1970) Polymerization of flagellin and polymorphism of flagella. Adv Biophys 1:99–155

    CAS  Google Scholar 

  84. Li D, Qu XW, Newton SMC, Klebba PE, Mao CB (2012) Morphology-controlled synthesis of silica nanotubes through pH- and sequence-responsive morphological change of bacterial flagellar biotemplates. J Mater Chem 22(31):15702–15709

    Article  CAS  Google Scholar 

  85. Yamashita I (2001) Fabrication of a two-dimensional array of nano-particles using ferritin molecule. Thin Solid Films 393(1–2):12–18

    Article  CAS  Google Scholar 

  86. McMillan RA, Paavola CD, Howard J, Chan SL, Zaluzec NJ, Trent JD (2002) Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat Mater 1(4):247–252

    Article  CAS  Google Scholar 

  87. Sun J, DuFort C, Daniel MC, Murali A, Chen C, Gopinath K et al (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci USA 104(4):1354–1359

    Article  CAS  Google Scholar 

  88. Cao BR, Xu H, Mao CB (2011) Controlled self-assembly of rodlike bacterial pili particles into ordered lattices. Angew Chem Int Ed 50(28):6264–6268

    Article  CAS  Google Scholar 

  89. Coffer JL, Bigham SR, Li X, Pinizzotto RF, Rho YG, Pirtle RM et al (1996) Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl Phys Lett 69(25):3851–3853

    Article  CAS  Google Scholar 

  90. Dittmer WU, Simmel FC (2004) Chains of semiconductor nanoparticles templated on DNA. Appl Phys Lett 85(4):633–635

    Article  CAS  Google Scholar 

  91. Nyamjav D, Ivanisevic A (2005) Templates for DNA-templated Fe3O4 nanoparticles. Biomaterials 26(15):2749–2757

    Article  CAS  Google Scholar 

  92. Gu Q, Cheng CD, Haynie DT (2005) Cobalt metallization of DNA: toward magnetic nanowires. Nanotechnology 16(8):1358–1363

    Article  CAS  Google Scholar 

  93. Becerril HA, Ludtke P, Willardson BM, Woolley AT (2006) DNA-templated nickel nanostructures and protein assemblies. Langmuir 22(24):10140–10144

    Article  CAS  Google Scholar 

  94. Monson CF, Woolley AT (2003) DNA-templated construction of copper nanowires. Nano Lett 3(3):359–363

    Article  CAS  Google Scholar 

  95. Ongaro A, Griffin F, Beeeher P, Nagle L, Iacopino D, Quinn A et al (2005) DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate. Chem Mater 17(8):1959–1964

    Article  CAS  Google Scholar 

  96. Park SH, Prior MW, LaBean TH, Finkelstein G (2006) Optimized fabrication and electrical analysis of silver nanowires templated on DNA molecules. Appl Phys Lett 89(3)

    Google Scholar 

  97. Lund J, Dong JC, Deng ZX, Mao CD, Parviz BA (2006) Electrical conduction in 7 nm wires constructed on lambda-DNA. Nanotechnology 17(11):2752–2757

    Article  CAS  Google Scholar 

  98. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391(6669):775–778

    Article  CAS  Google Scholar 

  99. Park SH, Barish R, Li HY, Reif JH, Finkelstein G, Yan H et al (2005) Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett 5(4):693–696

    Article  CAS  Google Scholar 

  100. Liu D, Park SH, Reif JH, LaBean TH (2004) DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc Natl Acad Sci USA 101(3):717–722

    Article  CAS  Google Scholar 

  101. Rothemund PWK (2006) Folding DNA, to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  Google Scholar 

  102. Zhang JP, Liu Y, Ke YG, Yan H (2006) Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6(2):248–251

    Article  CAS  Google Scholar 

  103. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–1665

    Article  CAS  Google Scholar 

  104. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    Article  CAS  Google Scholar 

  105. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544

    Article  CAS  Google Scholar 

  106. Li HY, Carter JD, LaBean TH (2009) Nanofabrication by DNA self-assembly. Mater Today 12(5):24–32

    Article  CAS  Google Scholar 

  107. Kuzuya A, Komiyama M (2010) DNA origami: fold, stick, and beyond. Nanoscale 2(3):310–322

    Article  CAS  Google Scholar 

  108. Samano EC, Pilo-Pais M, Goldberg S, Vogen BN, Finkelstein G, LaBean TH (2011) Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter 7(7):3240–3245

    Article  CAS  Google Scholar 

  109. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910):112–116

    Article  CAS  Google Scholar 

  110. Ding BQ, Deng ZT, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132(10):3248–+

    Article  CAS  Google Scholar 

  111. Pal S, Deng ZT, Ding BQ, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49(15):2700–2704

    Article  CAS  Google Scholar 

  112. Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50(9):2041–2044

    Article  CAS  Google Scholar 

  113. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  114. Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B et al (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 6:2071–2081

    Article  CAS  Google Scholar 

  115. Zhai WY, He CL, Wu L, Zhou Y, Chen HR, Chang J et al (2012) Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B Appl Biomater 100B(5):1397–1403

    Article  CAS  Google Scholar 

  116. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C et al (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32(16):3988–3999

    Article  CAS  Google Scholar 

  117. Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian FR et al (2012) Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano 6(9):8316–8324

    Article  CAS  Google Scholar 

  118. Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361

    Article  CAS  Google Scholar 

  119. Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR et al (2012) Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano 6(4):3318–3326

    Article  CAS  Google Scholar 

  120. Xu CJ, Xie J, Kohler N, Walsh EG, Chin YE, Sun SH (2008) Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting. Chem Asian J 3(3):548–552

    Article  CAS  Google Scholar 

  121. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  Google Scholar 

  122. Schlachter EK, Widmer HR, Bregy A, Lonnfors-Weitzel T, Vajtai I, Corazza N et al (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomedicine 6:1793–1800

    CAS  Google Scholar 

  123. Garcia-Aonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete nereis diversicolor. Environ Sci Technol 45(10):4630–4636

    Article  CAS  Google Scholar 

  124. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

  125. Meng H, Yang S, Li ZX, Xia T, Chen J, Ji ZX et al (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5(6):4434–4447

    Article  CAS  Google Scholar 

  126. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105(33):11613–11618

    Article  CAS  Google Scholar 

  127. Rima W, Sancey L, Aloy MT, Armandy E, Alcantara GB, Epicier T et al (2013) Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 34(1):181–195

    Article  CAS  Google Scholar 

  128. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  Google Scholar 

  129. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ et al (2010) In situ observation of the electrochemical lithiation of a single SnO(2) nanowire electrode. Science 330(6010):1515–1520

    Article  CAS  Google Scholar 

  130. Evans JE, Jungjohann KL, Wong PC, Chiu PL, Dutrow GH, Arslan I et al (2012) Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43(11):1085–1090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Science Foundation (DMR-0847758, CBET-0854414, CBET-0854465, and CMMI-1234957), National Institutes of Health (5R01HL092526-02, 5R01DE01563309, 1R21EB015190-01A1, 4R03AR056848-03), Department of Defense’s Peer Reviewed Medical Research Program (W81XWH-12-1-0384), Oklahoma Center for the Advancement of Science and Technology (HR11-006), and Oklahoma Center for Adult Stem Cell Research (434003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbin B. Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qiu, P., Wang, L., Mao, C.B. (2014). TEM Characterization of Biological and Inorganic Nanocomposites. In: Kumar, C. (eds) Transmission Electron Microscopy Characterization of Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38934-4_1

Download citation

Publish with us

Policies and ethics