Skip to main content

Gene-Based Vaccine Approaches for Respiratory Syncytial Virus

  • Chapter
  • First Online:
Challenges and Opportunities for Respiratory Syncytial Virus Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 372))

Abstract

A respiratory syncytial virus (RSV) vaccine has remained elusive for decades, largely due to the failure of a formalin-inactivated RSV vaccine in the 1960s that resulted in enhanced disease upon RSV exposure in the immunized individuals. Vaccine development has also been hindered by the incomplete immunity conferred by natural infection allowing for re-infection at any time, and the immature immune system and circulating maternal antibodies present in the neonate, the primary target for a vaccine. This chapter will review the use of gene delivery, both nonviral and viral, as a potential vaccine approach for human RSV. Many of these gene-based vaccines vectors elicit protective immune responses in animal models. None of the RSV gene-based platforms have progressed into clinical trials, mostly due to uncertainty regarding the direct translation of animal model results to humans and the hesitancy to invest in costly clinical trials with the potential for unclear and complicated immune responses. The continued development of RSV vaccine gene-based approaches is warranted because of their inherent flexibility with regard to composition and administration. It is likely that multiple candidate vaccines will reach human testing in the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanco JC, Boukhvalova MS, Shirey KA, Prince GA, Vogel SN (2010) New insights for development of a safe and protective RSV vaccine. Hum vaccines 6:482–492

    Article  CAS  Google Scholar 

  • Brave A, Ljungberg K, Wahren B, Liu MA (2007) Vaccine delivery methods using viral vectors. Mol Pharm 4:18–32. doi:10.1021/mp060098+

    Article  PubMed  Google Scholar 

  • Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG (1999) Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 92:67–75. doi:10.1006/clim.1999.4724

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893. doi:10.1016/S0140-6736(08)61591-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cano F, Plotnicky-Gilquin H, Nguyen TN, Liljeqvist S, Samuelson P, Bonnefoy J, Stahl S, Robert A (2000) Partial protection to respiratory syncytial virus (RSV) elicited in mice by intranasal immunization using live staphylococci with surface-displayed RSV-peptides. Vaccine 18:2743–2752

    Article  CAS  PubMed  Google Scholar 

  • Chang J (2011) Current progress on development of respiratory syncytial virus vaccine. BMB reports 44:232–237. doi:DOI10.5483/BMBRep.2011.44.4.232

    Article  CAS  PubMed  Google Scholar 

  • Clark KR, Sferra TJ, Johnson PR (1997) Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 8:659–669. doi:10.1089/hum.1997.8.6-659

    Article  CAS  PubMed  Google Scholar 

  • Collins PL, Melero JA (2011) Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 162:80–99. doi:10.1016/j.virusres.2011.09.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins PL, Purcell RH, London WT, Lawrence LA, Chanock RM, Murphy BR (1990) Evaluation in chimpanzees of vaccinia virus recombinants that express the surface glycoproteins of human respiratory syncytial virus. Vaccine 8:164–168

    Article  CAS  PubMed  Google Scholar 

  • Crowe JE Jr, Collins PL, London WT, Chanock RM, Murphy BR (1993) A comparison in chimpanzees of the immunogenicity and efficacy of live attenuated respiratory syncytial virus (RSV) temperature-sensitive mutant vaccines and vaccinia virus recombinants that express the surface glycoproteins of RSV. Vaccine 11:1395–1404

    Article  CAS  PubMed  Google Scholar 

  • de Waal L, Wyatt LS, Yuksel S, van Amerongen G, Moss B, Niesters HG, Osterhaus AD, de Swart RL (2004) Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine 22:923–926. doi:10.1016/j.vaccine.2003.10.010

    Article  PubMed  Google Scholar 

  • Elliott MB, Chen T, Terio NB, Chong SY, Abdullah R, Luckay A, Egan MA, Boutilier LA, Melville K, Lerch RA, Long D, Eldridge JH, Parks CL, Udem SA, Hancock GE (2007) Alphavirus replicon particles encoding the fusion or attachment glycoproteins of respiratory syncytial virus elicit protective immune responses in BALB/c mice and functional serum antibodies in rhesus macaques. Vaccine 25:7132–7144. doi:10.1016/j.vaccine.2007.07.065

    Article  CAS  PubMed  Google Scholar 

  • Falcone V, Mihm D, Neumann-Haefelin D, Costa C, Nguyen T, Pozzi G, Ricci S (2006) Systemic and mucosal immunity to respiratory syncytial virus induced by recombinant Streptococcus gordonii surface-displaying a domain of viral glycoprotein G. FEMS Immunol Med Microbiol 48:116–122. doi:10.1111/j.1574-695X.2006.00130.x

    Article  CAS  PubMed  Google Scholar 

  • Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis: an official publication of the Infectious Diseases Society of America 53:296–302. doi:10.1093/cid/cir334

    Article  CAS  Google Scholar 

  • Fu Y, He J, Zheng X, Wu Q, Zhang M, Wang X, Wang Y, Xie C, Tang Q, Wei W, Wang M, Song J, Qu J, Zhang Y, Hong T (2009) Intranasal immunization with a replication-deficient adenoviral vector expressing the fusion glycoprotein of respiratory syncytial virus elicits protective immunity in BALB/c mice. Biochem Biophys Res Commun 381:528–532. doi:10.1016/j.bbrc.2009.02.075

    Article  CAS  PubMed  Google Scholar 

  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, O’Hagan DT, Singh M, Mason PW, Valiante NM, Dormitzer PR, Barnett SW, Rappuoli R, Ulmer JB, Mandl CW (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 109:14604–14609. doi:10.1073/pnas.1209367109

    Article  CAS  PubMed  Google Scholar 

  • Graham BS (2011) Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 239:149–166. doi:10.1111/j.1600-065X.2010.00972.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham FL (1990) Adenoviruses as expression vectors and recombinant vaccines. Trends Biotechnol 8:85–87

    Article  CAS  PubMed  Google Scholar 

  • Greer CE, Zhou F, Legg HS, Tang Z, Perri S, Sloan BA, Megede JZ, Uematsu Y, Vajdy M, Polo JM (2007) A chimeric alphavirus RNA replicon gene-based vaccine for human parainfluenza virus type 3 induces protective immunity against intranasal virus challenge. Vaccine 25:481–489. doi:10.1016/j.vaccine.2006.07.048

    Article  CAS  PubMed  Google Scholar 

  • Hjorth RN, Bonde GM, Pierzchala WA, Vernon SK, Wiener FP, Levner MH, Lubeck MD, Hung PP (1988) A new hamster model for adenoviral vaccination. Arch Virol 100:279–283

    Article  CAS  PubMed  Google Scholar 

  • Hsu KH, Lubeck MD, Bhat BM, Bhat RA, Kostek B, Selling BH, Mizutani S, Davis AR, Hung PP (1994) Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. Vaccine 12:607–612

    Article  CAS  PubMed  Google Scholar 

  • Hsu KH, Lubeck MD, Davis AR, Bhat RA, Selling BH, Bhat BM, Mizutani S, Murphy BR, Collins PL, Chanock RM et al (1992) Immunogenicity of recombinant adenovirus-respiratory syncytial virus vaccines with adenovirus types 4, 5, and 7 vectors in dogs and a chimpanzee. J Infect Dis 166:769–775

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz JL (2011) Respiratory syncytial virus vaccine development. Expert Rev Vaccines 10:1415–1433. doi:10.1586/erv.11.120

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiao S, Williams P, Berg RK, Hodgeman BA, Liu L, Repetto G, Wolff JA (1992) Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 3:21–33. doi:10.1089/hum.1992.3.1-21

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Ghosh-Choudhury G, Smiley JR, Fallis L, Graham FL (1988) Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 164:1–14

    Article  CAS  PubMed  Google Scholar 

  • Johnson PR, Schnepp BC, Connell MJ, Rohne D, Robinson S, Krivulka GR, Lord CI, Zinn R, Montefiori DC, Letvin NL, Clark KR (2005) Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 79:955–965. doi:10.1128/JVI.79.2.955-965.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, Desrosiers RC, Clark KR (2009) Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 15:901–906. doi:10.1038/nm.1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlmann R, Schwannecke S, Tippler B, Ternette N, Temchura VV, Tenbusch M, Uberla K, Grunwald T (2009) Protective efficacy and immunogenicity of an adenoviral vector vaccine encoding the codon-optimized F protein of respiratory syncytial virus. J Virol 83:12601–12610. doi:10.1128/JVI.01036-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nature reviews. Genetics 9:776–788. doi:10.1038/nrg2432

    CAS  PubMed  Google Scholar 

  • Li X, Sambhara S, Li CX, Ettorre L, Switzer I, Cates G, James O, Parrington M, Oomen R, Du RP, Klein M (2000) Plasmid DNA encoding the respiratory syncytial virus G protein is a promising vaccine candidate. Virology 269:54–65. doi:10.1006/viro.2000.0186

    Article  PubMed  Google Scholar 

  • Li X, Sambhara S, Li CX, Ewasyshyn M, Parrington M, Caterini J, James O, Cates G, Du RP, Klein M (1998) Protection against respiratory syncytial virus infection by DNA immunization. J Exp Med 188:681–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liniger M, Zuniga A, Naim HY (2007) Use of viral vectors for the development of vaccines. Expert Rev Vaccines 6:255–266. doi:10.1586/14760584.6.2.255

    Article  CAS  PubMed  Google Scholar 

  • Mayr A, Stickl H, Muller HK, Danner K, Singer H (1978) [The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl)]. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, Betriebshygiene, praventive Medizin 167:375–390

    CAS  Google Scholar 

  • McDermott MR, Graham FL, Hanke T, Johnson DC (1989) Protection of mice against lethal challenge with herpes simplex virus by vaccination with an adenovirus vector expressing HSV glycoprotein B. Virology 169:244–247

    Article  CAS  PubMed  Google Scholar 

  • McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, Defawe OD, Carter DK, Hural J, Akondy R, Buchbinder SP, Robertson MN, Mehrotra DV, Self SG, Corey L, Shiver JW, Casimiro DR (2008) HIV-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis. Lancet 372:1894–1905. doi:10.1016/S0140-6736(08)61592-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehendale S, van Lunzen J, Clumeck N, Rockstroh J, Vets E, Johnson PR, Anklesaria P, Barin B, Boaz M, Kochhar S, Lehrman J, Schmidt C, Peeters M, Schwarze-Zander C, Kabamba K, Glaunsinger T, Sahay S, Thakar M, Paranjape R, Gilmour J, Excler JL, Fast P, Heald AE (2008) A phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C adeno-associated virus vaccine. AIDS Res Hum Retroviruses 24:873–880. doi:10.1089/aid.2008.0292

    Article  CAS  PubMed  Google Scholar 

  • Mok H, Lee S, Utley TJ, Shepherd BE, Polosukhin VV, Collier ML, Davis NL, Johnston RE, Crowe JE Jr (2007) Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats. J Virol 81:13710–13722. doi:10.1128/JVI.01351-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 93:11341–11348

    Article  CAS  PubMed  Google Scholar 

  • Murata Y (2009) Respiratory syncytial virus vaccine development. Clin Lab Med 29:725–739. doi:10.1016/j.cll.2009.07.004

    Article  PubMed Central  PubMed  Google Scholar 

  • Olmsted RA, Elango N, Prince GA, Murphy BR, Johnson PR, Moss B, Chanock RM, Collins PL (1986) Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci USA 83:7462–7466

    Article  CAS  PubMed  Google Scholar 

  • Olszewska W, Suezer Y, Sutter G, Openshaw PJ (2004) Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins. Vaccine 23:215–221. doi:10.1016/j.vaccine.2004.05.015

    Article  CAS  PubMed  Google Scholar 

  • Pacini DL, Dubovi EJ, Clyde WA Jr (1984) A new animal model for human respiratory tract disease due to adenovirus. J Infect Dis 150:92–97

    Article  CAS  PubMed  Google Scholar 

  • Palffy R, Gardlik R, Hodosy J, Behuliak M, Resko P, Radvansky J, Celec P (2006) Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther 13:101–105. doi:10.1038/sj.gt.3302635

    Article  CAS  PubMed  Google Scholar 

  • Panicali D, Davis SW, Weinberg RL, Paoletti E (1983) Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci USA 80:5364–5368

    Article  CAS  PubMed  Google Scholar 

  • Panicali D, Paoletti E (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci USA 79:4927–4931

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E (1996) Applications of pox virus vectors to vaccination: an update. Proc Natl Acad Sci USA 93:11349–11353

    Article  CAS  PubMed  Google Scholar 

  • Pascolo S (2004) Messenger RNA-based vaccines. Expert Opin Biol Ther 4:1285–1294. doi:10.1517/14712598.4.8.1285

    Article  CAS  PubMed  Google Scholar 

  • Pemberton RM, Cannon MJ, Openshaw PJ, Ball LA, Wertz GW, Askonas BA (1987) Cytotoxic T cell specificity for respiratory syncytial virus proteins: fusion protein is an important target antigen. J Gen Virol 68(Pt 8):2177–2182

    Article  CAS  PubMed  Google Scholar 

  • Piccini A, Paoletti E (1986) The use of vaccinia virus for the construction of recombinant vaccines. BioEssays: News Rev Mole Cell Dev Biol 5:248–252. doi:10.1002/bies.950050604

    Article  CAS  Google Scholar 

  • Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239:389–401. doi:10.1006/viro.1997.8878

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samulski RJ, Berns KI, Tan M, Muzyczka N (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 79:2077–2081

    Article  CAS  PubMed  Google Scholar 

  • Schickli JH, Dubovsky F, Tang RS (2009) Challenges in developing a pediatric RSV vaccine. Hum Vaccines 5:582–591

    CAS  Google Scholar 

  • Schlesinger S, Dubensky TW (1999) Alphavirus vectors for gene expression and vaccines. Curr Opin Biotechnol 10:434–439

    Article  CAS  PubMed  Google Scholar 

  • Small JC, Ertl HC (2011) Viruses—from pathogens to vaccine carriers. Curr Opin Virol 1:241–245. doi:10.1016/j.coviro.2011.07.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smerdou C, Liljestrom P (1999) Non-viral amplification systems for gene transfer: vectors based on alphaviruses. Curr Opin Mol Ther 1:244–251

    CAS  PubMed  Google Scholar 

  • Smith GL, Moss B (1983) Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25:21–28

    Article  CAS  PubMed  Google Scholar 

  • Swenson DL, Wang D, Luo M, Warfield KL, Woraratanadharm J, Holman DH, Dong JY, Pratt WD (2008) Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol CVI 15:460–467. doi:10.1128/CVI.00431-07

    Article  CAS  Google Scholar 

  • Ternette N, Tippler B, Uberla K, Grunwald T (2007) Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus. Vaccine 25:7271–7279. doi:10.1016/j.vaccine.2007.07.025

    Article  CAS  PubMed  Google Scholar 

  • Vardas E, Kaleebu P, Bekker LG, Hoosen A, Chomba E, Johnson PR, Anklesaria P, Birungi J, Barin B, Boaz M, Cox J, Lehrman J, Stevens G, Gilmour J, Tarragona T, Hayes P, Lowenbein S, Kizito E, Fast P, Heald AE, Schmidt C (2010) A phase 2 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 vaccine based on adeno-associated virus. AIDS Res Hum Retroviruses 26:933–942. doi:10.1089/aid.2009.0242

    Article  CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mole Ther J Am Soc Gene Ther 14:316–327. doi:10.1016/j.ymthe.2006.05.009

    Article  CAS  Google Scholar 

  • Wyatt LS, Whitehead SS, Venanzi KA, Murphy BR, Moss B (1999) Priming and boosting immunity to respiratory syncytial virus by recombinant replication-defective vaccinia virus MVA. Vaccine 18:392–397

    Article  CAS  PubMed  Google Scholar 

  • Xiang ZQ, Gao GP, Reyes-Sandoval A, Li Y, Wilson JM, Ertl HC (2003) Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J Virol 77:10780–10789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie C, He JS, Zhang M, Xue SL, Wu Q, Ding XD, Song W, Yuan Y, Li DL, Zheng XX, Lu YY, Shang Z (2007) Oral respiratory syncytial virus (RSV) DNA vaccine expressing RSV F protein delivered by attenuated Salmonella typhimurium. Hum Gene Ther 18:746–752. doi:10.1089/hum.2007.053

    Article  CAS  PubMed  Google Scholar 

  • Xin KQ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K, Nomiyama H, Saito T, Imai M, Monahan J, Okuda K, Ozawa K (2001) A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 12:1047–1061. doi:10.1089/104303401750214276

    Article  CAS  PubMed  Google Scholar 

  • Yu JR, Kim S, Lee JB, Chang J (2008) Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol 82:2350–2357. doi:10.1128/JVI.02372-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loomis, R.J., Johnson, P.R. (2013). Gene-Based Vaccine Approaches for Respiratory Syncytial Virus. In: Anderson, L., Graham, B. (eds) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38919-1_15

Download citation

Publish with us

Policies and ethics