On Minimal and Maximal Suffixes of a Substring

  • Maxim Babenko
  • Ignat Kolesnichenko
  • Tatiana Starikovskaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7922)


Lexicographically minimal and lexicographically maximal suffixes of a string are fundamental notions of stringology. It is well known that the lexicographically minimal and maximal suffixes of a given string S can be computed in linear time and space by constructing a suffix tree or a suffix array of S. Here we consider the case when S is a substring of another string T of length n. We propose two linear-space data structures for T which allow to compute the minimal suffix of S in O(log1 + ε n) time (for any fixed ε > 0) and the maximal suffix of S in O(logn) time. Both data structures take O(n) time to construct.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Ullman, J.D., Hopcroft, J.E.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Theory of Computing Systems 28, 89–108 (1995), 10.1007/BF01191471MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)Google Scholar
  6. 6.
    Duval, J.-P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling Periodicity. Discrete Mathematics & Theoretical Computer Science 12, 237–248 (2010)MathSciNetGoogle Scholar
  9. 9.
    Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maxim Babenko
    • 1
    • 2
    • 3
  • Ignat Kolesnichenko
    • 2
    • 3
  • Tatiana Starikovskaya
    • 3
  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.Yandex LCCMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations