Advertisement

On Minimal and Maximal Suffixes of a Substring

  • Maxim Babenko
  • Ignat Kolesnichenko
  • Tatiana Starikovskaya
Conference paper
  • 964 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7922)

Abstract

Lexicographically minimal and lexicographically maximal suffixes of a string are fundamental notions of stringology. It is well known that the lexicographically minimal and maximal suffixes of a given string S can be computed in linear time and space by constructing a suffix tree or a suffix array of S. Here we consider the case when S is a substring of another string T of length n. We propose two linear-space data structures for T which allow to compute the minimal suffix of S in O(log1 + ε n) time (for any fixed ε > 0) and the maximal suffix of S in O(logn) time. Both data structures take O(n) time to construct.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Ullman, J.D., Hopcroft, J.E.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Theory of Computing Systems 28, 89–108 (1995), 10.1007/BF01191471MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)Google Scholar
  6. 6.
    Duval, J.-P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling Periodicity. Discrete Mathematics & Theoretical Computer Science 12, 237–248 (2010)MathSciNetGoogle Scholar
  9. 9.
    Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maxim Babenko
    • 1
    • 2
    • 3
  • Ignat Kolesnichenko
    • 2
    • 3
  • Tatiana Starikovskaya
    • 3
  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.Yandex LCCMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations