Atrial Fibrosis and Atrial Fibrillation: A Computer Simulation in the Posterior Left Atrium

  • Jichao Zhao
  • Robert S. Stephenson
  • Greg B. Sands
  • Ian J. LeGrice
  • Henggui Zhang
  • Jonathan C. Jarvis
  • Bruce H. Smaill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


Computer models, especially those integrated with high resolution 3D surface geometry and myofibre structure throughout the whole atria, are powerful instruments to investigate the mechanism of atrial fibrillation. There are many factors that may contribute to electrical instability of the posterior left atrium (PLA): 1) abrupt changes in wall thickness and myofiber orientations of PLA, 2) different action potential duration in pulmonary vein sleeves and adjacent left atrium (LA) and 3) fibrosis patch. The first two factors have been investigated in our previous work. Here, we further develop an image-based atrial model by incorporating computer-generated fibrosis into the LA to reflect the structure remodeling, motivated by the fibrosis imaging data from Utah. A novel compact finite difference method was implemented to solve the governing cardiac equations. A bursting simulation protocol was applied in the PLA with different levels of structure remodeling and control. Marked conduction delays and uni-directional block were seen with both anisotropy and structure remodeling. The existence of fibrosis increases regional electrophysiological discrepancies and chance of uni-directional block. We conclude that existence of fibrosis potentially increase the occurrences of conduction reentry and the number of wavelets, contributing further to electrical instability in PLA.


Atrial fibrillation Fibrosis Heart Failure Computer simulation Pulmonary vein Left atrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smaill, B.H., Zhao, J., Trew, M.L.: 3D Impulse Propagation In Myocardium: Arrhythmogenic Mechanisms at the Tissue Level. Circulation Research 112, 834–848 (2013)CrossRefGoogle Scholar
  2. 2.
    Nattel, S., Maguy, A., Le Bouter, S., Yeh, Y.H.: Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol. Rev. 87(2), 425–456 (2007)CrossRefGoogle Scholar
  3. 3.
    Schotten, U., Verheule, S., Kirchhof, P., Goette, A.: Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal. Physiol. Rev. 91(1), 265–325 (2011)CrossRefGoogle Scholar
  4. 4.
    Rohr, S.: Arrhythmogenic Implications of Fibroblast-Myocyte Interactions. Circ. Arrhythm. Electrophysiol. 5(2), 442–452 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhao, J., Yao, Y., Huang, W., Shi, R., Zhang, S., LeGrice, I.J., Lever, N.A., Smaill, B.H.: Novel Methods for Characterization of Paroxysmal Atrial Fibrillation in Human Left Atria. The Open Biomedical Engineering Journal (2013)Google Scholar
  6. 6.
    Harrild, D.M., Henriquez, C.S.: A Computer Model of Normal Conduction In The Human Atria. Circulation Research 87, 25–36 (2000)CrossRefGoogle Scholar
  7. 7.
    Seemann, G., Hoper, C., Sachse, F.B., Dossel, O., Holden, A.V., Zhang, H.: Heterogeneous Three-Dimensional Anatomical And Electrophysiological Model Of Human Atria. Philos. Transact. A Math. Phys. Eng. Sci. 15, 364(1843), 1465–1481 (2006)Google Scholar
  8. 8.
    McDowell, K.S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R.S., Trayanova, N.A.: Methodology for Patient-Specific Modeling Of Atrial Fibrosis As A Substrate For Atrial Fibrillation. Journal of Electrocardiology 45, 640–645 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, K., Ho, S.Y., Gibson, D.G., Anderson, R.H.: Architecture of Atrial Musculature in Humans. Br. Heart J. 73(6), 559–565 (1995)CrossRefGoogle Scholar
  10. 10.
    Zhao, J., Butters, T.D., Zhang, H., Pullan, A.J., LeGrice, I.J., Sands, G.B., Smaill, B.H.: An Image-Based Model of Atrial Muscular Architecture: Effects Of Structural Anisotropy On Electrical Activation. Circ. Arrhythm. Electrophysiol. 5, 361–370 (2012)CrossRefGoogle Scholar
  11. 11.
    Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Ito, M., Horie, M., Trayanova, N.A.: The Role of Fibroblasts in Complex Fractionated Electrograms During Persistent/Permanent Atrial Fibrillation: Implications for Electrogram-Based Catheter Ablation. Circ. Res. 110(2), 275–284 (2012)CrossRefGoogle Scholar
  12. 12.
    Gerneke, D.A., Sands, G.B., Ganesalingam, R., Joshi, P., Caldwell, B.J., Smaill, B.H., Legrice, I.J.: Surface Imaging Microscopy Using An Ultramiller For Large Volume 3D Reconstruction Of Wax- And Resin-Embedded Tissues. Microscopy Research and Technique 70, 886–894 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhao, J., Butters, T.D., Zhang, H., LeGrice, I.J., Sands, G.B., Smaill, B.H.: Image-Based Model of Atrial Anatomy and Electrical Activation:A Computational Platform for Investigating Atrial Arrhythmia. IEEE Transactions on Medical Imaging 32(1), 18–27 (2013)CrossRefGoogle Scholar
  14. 14.
    Tanaka, K., et al.: Spatial Distribution Of Fibrosis Governs Fibrillation Wave Dynamics In The Posterior Left Atrium During Heart Failure. Circ. Res. 101(8), 839–847 (2007)CrossRefGoogle Scholar
  15. 15.
    Oakes, R.S., Badger, T.J., Kholmovski, E.G., Akoum, N., Burgon, N.S., Fish, E.N., Blauer, J.J., Rao, S.N., DiBella, E.V., Segerson, N.M., Daccarett, M., Windfelder, J., McGann, C.J., Parker, D., MacLeod, R.S., Marrouche, N.F.: Detection And Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging In Patients With Atrial Fibrillation. Circulation 119(13), 1758–1767 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhao, J., Jin, Y., Ma, L., Corless, R.M.: A Highly Efficient And Accurate Algorithm For Solving The Partial Differential Equation In Cardiac Tissue Models. In: WSEAS Int. Conf. on Mathematical Biology and Ecology, Miami, Florida, USA, January 18-20 (2006)Google Scholar
  17. 17.
    de Jong, S., van Veen, T.A., van Rijen, H.V., de Bakker, J.M.: Fibrosis and Cardiac Arrhythmias. J. Cardiovasc. Pharmacol. (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jichao Zhao
    • 1
  • Robert S. Stephenson
    • 2
  • Greg B. Sands
    • 1
  • Ian J. LeGrice
    • 1
    • 3
  • Henggui Zhang
    • 4
  • Jonathan C. Jarvis
    • 5
  • Bruce H. Smaill
    • 1
    • 3
  1. 1.Auckland Bioengineering InstituteThe University of AucklandAucklandNew Zealand
  2. 2.Institute of Ageing & Chronic DiseaseUniv. of LiverpoolUK
  3. 3.Physiology DepartmentThe University of AucklandAucklandNew Zealand
  4. 4.Biological Physics Group, School of Physics & AstronomyUniv. of ManchesterUK
  5. 5.School of Sport and Exercise SciencesLiverpool John Moores UniversityUK

Personalised recommendations