Skip to main content

Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

Accurate segmentation of the whole heart from 3D image sequences is an important step in the developement of clinical applications. As manual delineation is a tedious task that is prone to errors and dependant on the expertise of the observer, fully automated segmentation methods are highly desirable. In this work, we present a fully automated method for the segmentation of the whole heart and the great vessels from 3D images. The method is based on a muti-atlas propagation segmentation scheme, that has been proven to be succesful in brain segmentation. Based on a cross correlation metric, our method selects the best atlases for propagation allowing the refinement of the segmentation at each iteration of the propagation. We show that our method allows segmentation from multiple image modalities by validating it on computed tomography angiography (CTA) and magnetic resonance images (MRI). Our results are comparable to state-of-the-art methods on CTA and MRI with average Dice scores of 90.9% and 89.0% for the whole heart when evaluated on a 23 and 8 cases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  2. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features. IEEE Transactions on Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  3. Peters, J., Ecabert, O., Meyer, C., Kneser, R., Weese, J.: Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation. Medical Image Analysis 14(1), 70–84 (2010)

    Article  Google Scholar 

  4. Išgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-Atlas-Based SegmentationWith Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Trans. Med. Imag. 28(7), 1000–1010 (2009)

    Article  Google Scholar 

  5. Rikxoort, E.M., Išgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M., Pluim, J.P.W., van Ginneken, B.: Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical Image Analysis (2010)

    Google Scholar 

  6. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imag. 29(9), 1612–1625 (2010)

    Article  Google Scholar 

  7. Kirişli, H.A., Schaap, M., Klein, S., Papadopoulou, S.L., Bonardi, M., Chen, C.H., Weustink, A.C., Mollet, N.R.A., Vonken, E.P.A., van der Geest, R.J., van Walsum, T., Niessen, W.J.: Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study. Medical Physics 37(12), 6279–6292 (2010)

    Article  Google Scholar 

  8. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation. IEEE Trans. Med. Imag. 23(70), 903–921 (2004)

    Article  Google Scholar 

  9. Ourselin, S., Roche, S., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vis. Comp. 19(1-2), 25–31 (2001)

    Article  Google Scholar 

  10. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using freeform deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)

    Article  Google Scholar 

  11. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Fox, N.C., Hawkes, D.J., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  12. Cardoso, M.J., Modat, M., Keihaninejad, S., Cash, D., Ourselin, S.: Multi-STEPS: multi-label similarity and truth estimation for propagated segmentations. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 153–158 (2012)

    Google Scholar 

  13. Uribe, S., Tangchaoren, T., Parish, I., Wolf, R., Razavi, R., Greil, G., Schaeffter, T.: Volumetric cardiac quantification by using 3-D dual phase whole-heart MR imaging. Radiology 248, 606–614 (2008)

    Article  Google Scholar 

  14. Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schu, N., Fox, N.C., Ourselin, S.: ADNI: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage 51(4), 1345–1359 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuluaga, M.A., Cardoso, M.J., Modat, M., Ourselin, S. (2013). Multi-atlas Propagation Whole Heart Segmentation from MRI and CTA Using a Local Normalised Correlation Coefficient Criterion. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics