Skip to main content

Initial Experience with a Dynamic Imaging-Derived Immersed Boundary Model of Human Left Ventricle

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

Understanding the myocardial biomechanics of the left ventricle (LV) in health and disease is important for improving patient risk stratification and management. Computational models of the heart are able to provide insights into the mechanics of heart function. In this study, we develop a dynamic human LV model using an immersed boundary (IB) method along with a finite element description of myocardial mechanics. Our results show that this computational model is able to simulate LV dynamics from end-diastole to end-systole, and that the model results are in reasonably good agreement with noninvasive in vivo strain measurements obtained by magnetic resonance (MR) imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, A., Gao, H., McComb, C., Berry, C.: Myocardial strain estimated from standard cine MRI closely represents strain estimated from dedicated strain-encoded MRI. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), pp. 2650–2653. IEEE (2011)

    Google Scholar 

  2. Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Eng. 197(25), 2210–2231 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Griffith, B., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (submitted)

    Google Scholar 

  4. Guccione, J., Moonly, S., Moustakidis, P., Costa, K., Moulton, M., Ratcliffe, M., Pasque, M.: Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann. Thorac. Surg. 71(2), 654–662 (2001)

    Article  Google Scholar 

  5. Holzapfel, G., Ogden, R.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. Math. Phys. Eng. Sci. 367(1902), 3445–3475 (1902)

    Article  MathSciNet  Google Scholar 

  6. Hunter, P., McCulloch, A., Ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Progr. Biophys. Mol. Biol. 69(2-3), 289–331 (1998)

    Article  Google Scholar 

  7. McQueen, D., Peskin, C.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)

    Article  Google Scholar 

  8. Nash, M., Hunter, P.: Computational mechanics of the heart. J. Elasticity 61(1), 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Niederer, S., Hunter, P., Smith, N.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5), 1697–1722 (2006)

    Article  Google Scholar 

  10. Nordsletten, D., McCormick, M., Kilner, P., Hunter, P., Kay, D., Smith, N.: Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int. J. Numer. Meth. Biomed. Eng. 27(7), 1017–1039 (2010)

    Article  MathSciNet  Google Scholar 

  11. Nordsletten, D., Niederer, S., Nash, M., Hunter, P., Smith, N.: Coupling multi-physics models to cardiac mechanics. Progr. Biophys. Mol. Biol. 104(1), 77–88 (2011)

    Article  Google Scholar 

  12. Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MATH  Google Scholar 

  13. Potse, M., Dubé, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

    Article  Google Scholar 

  14. Wang, H., Gao, H., Luo, X., Berry, C., Griffith, B., Ogden, R., Wang, T.: Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Meth. Biomed. Eng. (2012)

    Google Scholar 

  15. Watanabe, H., Sugiura, S., Kafuku, H., Hisada, T.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87(3), 2074–2085 (2004)

    Article  Google Scholar 

  16. Zhang, Z., Sun, K., Saloner, D., Wallace, A., Ge, L., Baker, A., Guccione, J., Ratcliffe, M.: The benefit of enhanced contractility in the infarct borderzone: a virtual experiment. Front. Physiol. 3 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, H., Griffith, B.E., Carrick, D., McComb, C., Berry, C., Luo, X. (2013). Initial Experience with a Dynamic Imaging-Derived Immersed Boundary Model of Human Left Ventricle. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics