Advertisement

Patient-Specific Modeling of Heart Valves: From Image to Simulation

  • Ankush Aggarwal
  • Vanessa S. Aguilar
  • Chung-Hao Lee
  • Giovanni Ferrari
  • Joseph H. Gorman
  • Rober C. Gorman
  • Michael S. Sacks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

Heart valves play a very important role in the functioning of the heart and many of the heart failures are related to the valvular dysfunctions, e.g. aortic stenosis and mitral regurgitation. As the medical field is moving towards a patient-specific diagnosis and treatment procedures, modeling of heart valves with patient-specific information is becoming a significant tool in medical field. Here we present the ingredients for valve simulation specifically the aortic valve, with a main focus on a novel spline-based mapping technique which solves many issues in generating patient-specific models – the microstructural mapping, the pre-strain calculations, prescribing dynamic boundary conditions, validation and inverse-modeling to obtain material parameters.

Keywords

Aortic Valve Point Cloud Heart Valve Bicuspid Aortic Valve Spline Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sacks, M., Yoganathan, A.: Heart valve function: a biomechanical perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1484), 1369–1391 (2007)CrossRefGoogle Scholar
  2. 2.
    Sacks, M., David Merryman, W., Schmidt, D.: On the biomechanics of heart valve function. Journal of Biomechanics 42(12), 1804–1824 (2009)CrossRefGoogle Scholar
  3. 3.
    Rajamannan, N.: Cardiac Valvular Medicine. Springer (2012)Google Scholar
  4. 4.
    Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley (2009)Google Scholar
  5. 5.
    Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-d cardiac ct and tee. IEEE Transactions on Medical Imaging 29(9), 1636–1651 (2010)CrossRefGoogle Scholar
  6. 6.
    Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Hornegger, J., Navab, N., Comaniciu, D.: Personalized modeling and assessment of the aortic-mitral coupling from 4D TEE and CT. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 767–775. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bartels, R., Beatty, J., Barsky, B.: An introduction to splines for use in computer graphics and geometric modeling. Morgan Kaufmann Pub. (1987)Google Scholar
  8. 8.
    Fan, R., Bayoumi, A.S., Chen, P., Hobson, C.M., Wagner, W.R., Mayer Jr., J.E., Sacks, M.S., et al.: Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. Journal of Biomechanics 46(4), 662–669 (2013)CrossRefGoogle Scholar
  9. 9.
    Jermihov, P.N., Jia, L., Sacks, M.S., Gorman, R.C., Gorman, J.H., Chandran, K.B.: Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovascular Engineering and Technology 2(1), 48–56 (2011)CrossRefGoogle Scholar
  10. 10.
    Sacks, M., Smith, D., Hiester, E.: A small angle light scattering device for planar connective tissue microstructural analysis. Annals of Biomedical Engineering 25(4), 678–689 (1997)CrossRefGoogle Scholar
  11. 11.
    Sacks, M., et al.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. Journal of Biomechanical Engineering 125(2), 280 (2003)CrossRefGoogle Scholar
  12. 12.
    Aggarwal, A., Rudnick, J., Bruinsma, R., Klug, W.: Elasticity theory of macromolecular aggregates. Physical Review Letters 109(14), 148102 (2012)CrossRefGoogle Scholar
  13. 13.
    Amini, R., Eckert, C., Koomalsingh, K., McGarvey, J., Minakawa, M., Gorman, J., Gorman, R., Sacks, M.: On the in vivo deformation of the mitral valve anterior leaflet: Effects of annular geometry and referential configuration. Annals of Biomedical Engineering, 1–13 (2012)Google Scholar
  14. 14.
    Amini, R., van Loosdregt, I., Koomalsingh, K., Gorman, R., Gorman, J., Sacks, M.: Integration of microstructural architecture of the mitral valve into an anatomically accurate finite element mesh. QScience Proceedings (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ankush Aggarwal
    • 1
  • Vanessa S. Aguilar
    • 2
  • Chung-Hao Lee
    • 1
  • Giovanni Ferrari
    • 3
  • Joseph H. Gorman
    • 3
  • Rober C. Gorman
    • 3
  • Michael S. Sacks
    • 1
    • 2
  1. 1.Institute of Computational Engineering & SciencesUniversity of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Gorman Cardiovascular Research GroupUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations