Advertisement

A Multiple Hypothesis Based Method for Particle Tracking and Its Extension for Cell Segmentation

  • Liang Liang
  • Hongying Shen
  • Panteleimon Rompolas
  • Valentina Greco
  • Pietro De Camilli
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

In biological studies, it is often required to track thousands of small particles in microscopic images to analyze underlying mechanisms of cellular and subcellular processes which may lead to better understanding of some disease processes. In this paper, we present an automatic particle tracking method and apply it for analyzing an essential subcellular process, namely clathrin mediated endocytosis using total internal reflection microscopy. Particles are detected by using image filters and subsequently Gaussian mixture models are fitted to achieve sub-pixel resolution. A multiple hypothesis based framework is designed to solve data association problems and handle splitting/merging events. The tracking method is demonstrated on synthetic data under different scenarios and applied to real data. We also show that, by equipping with a cell detection module, the method can be extended straightforwardly for segmenting cell images taken by two-photon excitation microscopy.

Keywords

Gaussian Mixture Model Multiple Hypothesis Clathrin Mediate Endocytosis Cell Segmentation Particle Tracking Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slepnev, V.I., Camilli, P.D.: Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Reviews Neuroscience 1, 161–172 (2000)CrossRefGoogle Scholar
  2. 2.
    Brandenburg, B., Zhuang, X.: Virus trafficking – learning from single-virus tracking. Nature Reviews Microbiology 5, 197–208 (2007)CrossRefGoogle Scholar
  3. 3.
    Genovesio, A., Liedl, T., Emiliani, V., Parak, W.J., Coppey-Moisan, M., Olivo-Marin, J.-C.: Multiple particle tracking in 3-d+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Transactions on Image Processing 15(5), 1062–1070 (2006)CrossRefGoogle Scholar
  4. 4.
    Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., Danuser, G.: Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods 5, 695–702 (2008)CrossRefGoogle Scholar
  5. 5.
    Carter, B.C., Shubeita, G.T., Gross, S.P.: Tracking single-particles: a user-friendly quantitative evaluation. Physical Biology 2(1), 60–72 (2005)CrossRefGoogle Scholar
  6. 6.
    Smal, I., Draegestein, K., Galjart, N., Niessen, W.J., Meijering, E.H.W.: Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis. IEEE Transactions on Medical Imaging 27(6), 789–804 (2008)CrossRefGoogle Scholar
  7. 7.
    Reid, D.B.: An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control 24, 843–854 (1979)CrossRefGoogle Scholar
  8. 8.
    Chenouard, N., Bloch, I., Olivo-Marin, J.-C.: Multiple hypothesis tracking in microscopy images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1346–1349 (2009)Google Scholar
  9. 9.
    Feng, L., Xu, Y., Yang, Y., Zheng, X.: Multiple dense particle tracking in fluorescence microscopy images based on multidimensional assignment. Journal of Structural Biology 173, 219–228 (2011)CrossRefGoogle Scholar
  10. 10.
    Poore, A.B.: Some assignment problems arising from multiple target tracking. Mathematical and Computer Modelling 43, 1074–1091 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Genovesio, A., Olivo-Marin, J.-C.: Split and merge data association filter for dense multi-target tracking, pp. 677–680 (2004)Google Scholar
  12. 12.
    Thomann, D., Rines, D.R., Sorger, P.K., Danuser, G.: Automatic fluorescent tag detection in 3d with super-resolution: application to the analysis of chromosome movement. Journal of Microscopy 208(1), 49–64 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liang, L., Shen, H., De Camilli, P., Toomre, D.K., Duncan, J.S.: An expectation maximization based method for subcellular particle tracking using multi-angle TIRF microscopy. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 629–636. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part v. Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems 41(4), 1255–1321 (2005)CrossRefGoogle Scholar
  15. 15.
    Robbins, M.S., Hadwen, B.J.: The noise performance of electron multiplying charge-coupled devices. IEEE Transactions on Electron Devices 50(5), 1227–1232 (2003)CrossRefGoogle Scholar
  16. 16.
    Liang, L., Xu, Y., Shen, H., Camilli, P.D., Toomre, D., Duncan, J.S.: Automatic detection of subcellular particles in fluorescence microscopy via feature clustering and bayesian analysis. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 161–166 (2012)Google Scholar
  17. 17.
    Rompolas, P., Deschene, E.R., Zito, G., Gonzalez, D.G., Saotome, I., Haberman, A.M., Greco, V.: Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liang Liang
    • 1
  • Hongying Shen
    • 1
  • Panteleimon Rompolas
    • 1
  • Valentina Greco
    • 1
  • Pietro De Camilli
    • 1
  • James S. Duncan
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations