Advertisement

Relating Fisher Information to Detectability of Changes in Nodule Characteristics with CT

  • Qin Li
  • Rongping Zeng
  • Kyle J. Myers
  • Berkman Sahiner
  • Marios A. Gavrielides
  • Nicholas Petrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Fisher information provides a bound on the variance of any unbiased estimate for estimation tasks involving nonrandom parameters. In addition, a Fisher information approximation for ideal-observer detectability has been derived. We adopt and generalize such an approximation to establish a method to assess a system’s ability to detect small changes in lesion characteristics. By representing the lesion by a size parameter, the ability to detect small changes can be approximated by a function involving the size difference and the Fisher information. A concept, termed the approximated least required difference (ALRD), is introduced and evaluated as an upper bound for assessing a system’s power in size discrimination. We present a simulation study for lung nodules as an example to illustrate such a framework, where the image model incorporates a simulated CT imaging system, a thorax background and parameterized nodules. The noise is assumed to be multivariate Gaussian and the noise power spectrum (NPS) method is used to estimate the covariance matrix for the Fisher information calculation. In addition to bounding performance, our results also provide insights into factors, including nodule characteristics and acquisition parameters, that influence ALRD performance. This framework can be extended to connect other discrimination and estimation tasks, facilitating objective assessment and optimization of quantitative imaging systems.

Keywords

Fisher Information Lung Nodule Nodule Size Estimation Task Nodule Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J.: New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). European Journal of Cancer 45(2), 228–247 (2009)CrossRefGoogle Scholar
  2. 2.
    Gavrielides, M.A., Kinnard, L.M., Myers, K.J., Petrick, N.: Noncalcified lung nodules: Volumetric Assessment with thoracic CT. Radiology 251(1), 26–37 (2009)CrossRefGoogle Scholar
  3. 3.
    Gavrielides, M.A., Zeng, R., Kinnard, L.M., Myers, K.J., Petrick, N.: Information-theoretic approach for analyzing bias and variance in lung nodule size estimation. IEEE Trans. on Med. Imag. 29, 1795–1807 (2010)CrossRefGoogle Scholar
  4. 4.
    Gavrielides, M.A., Kinnard, L.M., Myers, K.J., Peregoy, J., Pritchard, W.F., Zeng, R., Esparza, J., Karanian, J., Petrick, N.: A resource for the assessment of lung nodule size estimation methods: database of thoracic CT scans of an anthropomorphic phantom. Optics Express 18, 15244–15255 (2010)CrossRefGoogle Scholar
  5. 5.
    Van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I. Wiley (1968)Google Scholar
  6. 6.
    Amari, S.I.: Differential geometrical theory of statistics. Springer (1985)Google Scholar
  7. 7.
    Barret, H.H., Myers, K.J.: Foundations of Image Science. Wiley (2004)Google Scholar
  8. 8.
    Shen, F., Clarkson, E.: Using fisher information to approximate ideal-observer performance on detection tasks for lumpy-background images. JOSA A 23(10), 2406–2414 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Clarkson, E., Shen, F.: Fisher information and surrogate figures of merit for the task-based assessment of image quality. JOSA A 27(10), 2313–2326 (2010)CrossRefGoogle Scholar
  10. 10.
    Hsieh, J.: Computed Tomography: Principles, Design, Artifacts and Recent Advances. SPIE Press, Bellingham (2003)Google Scholar
  11. 11.
    Zeng, R., Petrick, N., Gavrielides, M.A., Myers, K.J.: Approximations of noise covariance in multi-slice helical CT scans: impact on lung nodule size estimation. Med. Phys. 56, 6223–6242 (2011)Google Scholar
  12. 12.
    Siewerdsen, J.H., Cunningham, I.A., Jaffray, D.A.: A framework for noise-power spectrum analysis of multidimensional images. Med. Phys. 29, 2655–2671 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qin Li
    • 1
  • Rongping Zeng
    • 1
  • Kyle J. Myers
    • 1
  • Berkman Sahiner
    • 1
  • Marios A. Gavrielides
    • 1
  • Nicholas Petrick
    • 1
  1. 1.Division of Imaging and Applied Mathematics, Office of Science and, Engineering Laboratories, Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringUSA

Personalised recommendations