Multi-atlas Segmentation with Robust Label Transfer and Label Fusion

  • Hongzhi Wang
  • Alison Pouch
  • Manabu Takabe
  • Benjamin Jackson
  • Joseph Gorman
  • Robert Gorman
  • Paul A. Yushkevich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Multi-atlas segmentation has been widely applied in medical image analysis. This technique relies on image registration to transfer segmentation labels from pre-labeled atlases to a novel target image and applies label fusion to reduce errors produced by registration-based label transfer. To improve the performance of registration-based label transfer against registration errors, our first contribution is to propose a label transfer scheme that generates multiple warped versions of each atlas to one target image through registration paths obtained by composing inter-atlas registrations and atlas-target registrations. The problem of decreasing quality of warped atlases caused by accumulative errors in composing multiple registrations is properly addressed by an atlas selection method that is guided by atlas segmentations. To improve the performance of label fusion against registration errors, our second contribution is to integrate the probabilistic correspondence model employed by the non-local mean approach with the joint label fusion technique, both of which have shown excellent performance for label fusion. Experiments on mitral-valve segmentation in 3D transesophageal echocardiography (TEE) show the effectiveness of the proposed techniques.


Mitral Valve Image Registration Target Image Manual Segmentation Registration Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artaechevarria, X., Munoz-Barrutia, A., de Solorzano, C.O.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE TMI 28(8), 1266–1277 (2009)Google Scholar
  2. 2.
    Asman, A.J., Landman, B.A.: Non-local STAPLE: An intensity-driven multi-atlas rater model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 426–434. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  4. 4.
    Cardoso, M.J., Wolz, R., Modat, M., Fox, N.C., Rueckert, D., Ourselin, S.: Geodesic information flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 262–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Coupe, P., Manjon, J., Fonov, V., Pruessner, J., Robles, N., Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  6. 6.
    Dice, L.: Measure of the amount of ecological association between species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar
  7. 7.
    Gass, T., Székely, G., Goksel, O.: Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 29–37. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Hamm, J., Ye, D., Verma, R., Davatzikos, C.: Gram: A framework for geodesic registration on anatomical manifolds. MedIA 14(5), 633–642 (2010)Google Scholar
  9. 9.
    Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-d cardiac ct and tee. IEEE Transactions on Medical Imaging 29(9), 1636–1651 (2010)CrossRefGoogle Scholar
  10. 10.
    Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans. on MI 28(7), 1000–1010 (2009)Google Scholar
  11. 11.
    Grewal, J., Mankad, S., Freeman, W., Click, R., Suri, R., Abel, M., Oh, J., Pellikka, P., Nesbitt, G., Syed, I., Mulvagh, S., Miller, F.: Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J. Am. Soc. Echocardiogr. 22(1), 34–41 (2009)CrossRefGoogle Scholar
  12. 12.
    Jia, H., Yap, P., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. Neuroimage 59(1), 422–430 (2012)CrossRefGoogle Scholar
  13. 13.
    Sabuncu, M., Yeo, B., Leemput, K.V., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE TMI 29(10), 1714–1720 (2010)Google Scholar
  14. 14.
    Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., JohansenBerg, H., Bannister, P., Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N., Brady, J., Matthews, P.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(suppl. 1), 208–219 (2004)CrossRefGoogle Scholar
  15. 15.
    Sugeng, L., Shernan, S., Salgo, I.S., Weinert, L., Shook, D., Raman, J., Jeevanandam, V., Dupont, F., Settlemier, S., Savord, B., Fox, J., Mor-Avi, V., Lang, R.: Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J. Am. Coll. Cardiol. 52(6), 446–449 (2008)CrossRefGoogle Scholar
  16. 16.
    Vergnat, M., Jassar, A., Jackson, B., Ryan, L., Eperjesi, T., Pouch, A., Weiss, S., Cheung, A., Acker, M., Gorman, J., Gorman, R.: Ischemic mitral regurgitation: a quantitative three-dimensional echocardiographic analysis. Ann. Thorac. Surg. 91(1), 157–164 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. on PAMI 35(3), 611–623 (2013)CrossRefGoogle Scholar
  18. 18.
    Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D.: Leap: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)CrossRefGoogle Scholar
  19. 19.
    Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hongzhi Wang
    • 1
  • Alison Pouch
    • 2
  • Manabu Takabe
    • 2
  • Benjamin Jackson
    • 3
  • Joseph Gorman
    • 3
  • Robert Gorman
    • 3
  • Paul A. Yushkevich
    • 1
  1. 1.Department of RadiologyUniversity of PennsylvaniaUSA
  2. 2.Department of BioengineeringUniversity of PennsylvaniaUSA
  3. 3.Department of SurgeryUniversity of PennsylvaniaUSA

Personalised recommendations