Advertisement

Structural Brain Network Constrained Neuroimaging Marker Identification for Predicting Cognitive Functions

  • De Wang
  • Feiping Nie
  • Heng Huang
  • Jingwen Yan
  • Shannon L. Risacher
  • Andrew J. Saykin
  • Li Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Neuroimaging markers have been widely used to predict the cognitive functions relevant to the progression of Alzheimer’s disease (AD). Most previous studies identify the imaging markers without considering the brain structural correlations between neuroimaging measures. However, many neuroimaging markers interrelate and work together to reveal the cognitive functions, such that these relevant markers should be selected together as the phenotypic markers. To solve this problem, in this paper, we propose a novel network constrained feature selection (NCFS) model to identify the neuroimaging markers guided by the structural brain network, which is constructed by the sparse representation method such that the interrelations between neuroimaging features are encoded into probabilities. Our new methods are evaluated by the MRI and AV45-PET data from ADNI-GO and ADNI-2 (Alzheimer’s Disease Neuroimaging Initiative). In all cognitive function prediction tasks, our new NCFS method outperforms other state-of-the-art regression approaches. Meanwhile, we show that the new method can select the correlated imaging markers, which are ignored by the competing approaches.

Keywords

Neuroimaging Marker Identification Brain Network Based Feature Selection Correlated Marker Selection Imaging Genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashburner, J., Friston, K.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Chen, Z.J., He, Y., Rosa-Neto, P., Germann, J., Evans, A.C.: Revealing modular architecture of human brain structural networks by using cortical thickness from mri. Cerebral Cortex 18, 2374–2381 (2008)CrossRefGoogle Scholar
  3. 3.
    Hinrichs, C., Singh, V., et al.: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48(1), 138–149 (2009)CrossRefGoogle Scholar
  4. 4.
    Jack Jr., C.R., Bernstein, M.A., Borowski, B.J., Gunter, J.L., Fox, N.C., Thompson, P.M., Schuff, N., Krueger, G., Killiany, R.J., Decarli, C.S., Dale, A.M., Carmichael, O.W., Tosun, D., Weiner, M.W.: Update on the magnetic resonance imaging core of the alzheimer’s disease neuroimaging initiative. Alzheimers Dement 6(3), 212–220 (2010)CrossRefGoogle Scholar
  5. 5.
    Jagust, W.J., Bandy, D., Chen, K., Foster, N.L., Landau, S.M., Mathis, C.A., Price, J.C., Reiman, E.M., Skovronsky, D., Koeppe, R.A.: The alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement 6(3), 221–229 (2010)CrossRefGoogle Scholar
  6. 6.
    Khundrakpam, B.S., Reid, A., Brauer, J., et al.: Developmental changes in organization of structural brain networks. Cerebral Cortex (2012)Google Scholar
  7. 7.
    Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics 34(3), 1436–1462 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Risacher, S.L., Saykin, A.J., West, J.D., Shen, L., Firpi, H.A., McDonald, B.C.: Baseline mri predictors of conversion from mci to probable ad in the adni cohort. Curr. Alzheimer Res. 6(4), 347–361 (2009)CrossRefGoogle Scholar
  9. 9.
    Shen, L., Qi, Y., Kim, S., Nho, K., Wan, J., Risacher, S.L., Saykin, A.J., ADNI: Sparse bayesian learning for identifying imaging biomarkers in AD prediction. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 611–618. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Stonnington, C.M., Chu, C., et al.: Predicting clinical scores from magnetic resonance scans in alzheimer’s disease. Neuroimage 51(4), 1405–1413 (2010)CrossRefGoogle Scholar
  11. 11.
    Swaminathan, S., Shen, L., Risacher, S.L., Yoder, K.K., West, J.D., Kim, S., Nho, K., Foroud, T., Inlow, M., Potkin, S.G., Huentelman, M.J., Craig, D.W., Jagust, W.J., Koeppe, R.A., Mathis, C.A., Jack Jr., C.R., Weiner, M.W., Saykin, A.J.: Amyloid pathway-based candidate gene analysis of [(11)c]pib-pet in the Alzheimer’s disease neuroimaging initiative (adni) cohort. Brain Imaging Behav. 6(1), 1–15 (2012)CrossRefGoogle Scholar
  12. 12.
    Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc. B 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Walhovd, K., Fjell, A., et al.: Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging 31(7), 1107–1121 (2010)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Nie, F., Huang, H., Risacher, S.L., Ding, C., Saykin, A.J., Shen, L.: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: IEEE Conference on Computer Vision, pp. 557–562 (2011)Google Scholar
  15. 15.
    Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L., ADNI: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 115–123. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Nie, F., Huang, H., Risacher, S.L., Saykin, A.J., Shen, L., ADNI: Identifying disease sensitive and quantitative trait relevant biomarkers from multi-dimensional heterogeneous imaging genetics data via sparse multi-modal multi-task learning. In: 20th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB), vol. 28, pp. i127–i136 (2012)Google Scholar
  17. 17.
    Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Nho, K., Risacher, S.L., Saykin, A.J., Shen, L.: From Phenotype to Genotype: An Association Study of Candidate Phenotypic Markers to Alzheimer’s Disease Relevant SNPs. Bioinformatics 28, i619–i625 (2012)Google Scholar
  18. 18.
    Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A., Shen, L.: High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer Disease Progression Prediction. In: Advances in Neural Information Processing Systems, NIPS (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • De Wang
    • 1
  • Feiping Nie
    • 1
  • Heng Huang
    • 1
  • Jingwen Yan
    • 2
  • Shannon L. Risacher
    • 2
  • Andrew J. Saykin
    • 2
  • Li Shen
    • 2
  1. 1.Computer Science and EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA

Personalised recommendations