Advertisement

Moving Frames for Heart Fiber Geometry

  • Emmanuel Piuze
  • Jon Sporring
  • Kaleem Siddiqi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Elongated cardiac muscle cells named cardiomyocytes are densely packed in an intercellular collagen matrix and are aligned to helical segments in a manner which facilitates pumping via alternate contraction and relaxation. Characterizing the geometrical variation of their groupings as cardiac fibers is central to our understanding of normal heart function. Motivated by a recent abstraction by Savadjiev et al. of heart wall fibers into generalized helicoid minimal surfaces, this paper develops an extension based on differential forms. The key idea is to use Maurer-Cartan’s method of moving frames to study the rotations of a frame field attached to the local fiber direction. This approach provides a new set of parameters that are complimentary to those of Savadjiev et al. and offers a framework for developing new models of the cardiac fiber architecture. This framework is used to compute the generalized helicoid parameters directly, without the need to formulate an optimization problem. The framework admits a straightforward numerical implementation that provides statistical measurements consistent with those previously reported. Using Diffusion MRI we demonstrate that one such specialization, the homeoid, constrains fibers to lie locally within ellipsoidal shells and yields improved fits in the rat, the dog and the human to those obtained using generalized helicoids.

Keywords

Heart Myofibers Differential Geometry Connection Forms Moving Frames Diffusion MRI Generalized Helicoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streeter, D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M., Sperelakis, N. (eds.) Handbook of Physiology, Section 2. The Heart, pp. 61–112. Williams and Wilkins, New York (1979)Google Scholar
  2. 2.
    Peskin, C.S.: Mathematical aspects of heart physiology. Technical report, Courant Institute of Math. Sciences, New York University, New York, NY, USA (1975)Google Scholar
  3. 3.
    Horowitz, A., Perl, M., Sideman, S.: Geodesics as a mechanically optimal fiber geometry for the left ventricle. Basic. Res. Cardiol. 88(suppl. 2), 67–74 (1993)Google Scholar
  4. 4.
    Geerts, L., Bovendeerd, P., Nicolay, K., Arts, T.: Characterization of the normal cardiac myofiber field in goat measured with mr-diffusion tensor imaging. Am. J. Physiol.: Heart and Circ. Physiol. 283, H139–H145 (2002)Google Scholar
  5. 5.
    Beg, M.F., Helm, P.A., McVeigh, E.M., Miller, M.I., Winslow, R.L.: Computational cardiac anatomy using mri. Magn. Reson. Med. 52, 1167–1174 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Liu, W., Zhang, H., Lacy, L., Yang, X., Song, S.K., Wickline, W.A., Yu, X.: Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor mri. Am. J. Physiol.: Heart and Circ. Physiol. 289, H1898–H1907 (2005)CrossRefGoogle Scholar
  7. 7.
    Streeter, D., Bassett, D.: An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. The Anatomical Record 155(4), 503–511 (2005)CrossRefGoogle Scholar
  8. 8.
    LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol.: Heart and Circ. Physiol. 269 (1995)Google Scholar
  9. 9.
    Rohmer, D., Sitek, A., Gullberg, G.T.: Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (dtmri) data. Invest. Radiol. 42(11), 777–789 (2007)CrossRefGoogle Scholar
  10. 10.
    Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., Ayache, N.: Statistical analysis of the human cardiac fiber architecture from DT-MRI. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 171–179. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Ben-Shahar, O., Zucker, S.W.: The perceptual organization of texture flow: A contextual inference approach. IEEE TPAMI 25(4) (2003)Google Scholar
  12. 12.
    Savadjiev, P., Strijkers, G.J., Bakermans, A.J., Piuze, E., Zucker, S.W., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. USA 109(24), 9248–9253 (2012)CrossRefGoogle Scholar
  13. 13.
    Koenderink, J.: Solid shape, vol. 2. Cambridge Univ. Press (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuel Piuze
    • 1
  • Jon Sporring
    • 2
    • 1
  • Kaleem Siddiqi
    • 1
  1. 1.School of Computer Science & Centre for Intelligent MachinesMcGill UniversityCanada
  2. 2.eScience Center, Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations