Advertisement

Multimodal Surface Matching: Fast and Generalisable Cortical Registration Using Discrete Optimisation

  • Emma C. Robinson
  • Saad Jbabdi
  • Jesper Andersson
  • Stephen Smith
  • Matthew F. Glasser
  • David C. Van Essen
  • Greg Burgess
  • Michael P. Harms
  • Deanna M. Barch
  • Mark Jenkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Group neuroimaging studies of the cerebral cortex benefit from accurate, surface-based, cross-subject alignment for investigating brain architecture, function and connectivity. There is an increasing amount of high quality data available. However, establishing how different modalities correlate across groups remains an open research question. One reason for this is that the current methods for registration, based on cortical folding, provide sub-optimal alignment of some functional sub-regions of the brain. A more flexible framework is needed that will allow robust alignment of multiple modalities. We adapt the Fast Primal-Dual (Fast-PD) approach for discrete Markov Random Field (MRF) optimisation to spherical registration by reframing the deformation labels as a discrete set of rotations and propose a novel regularisation term, derived from the geodesic distance between rotation matrices. This formulation allows significant flexibility in the choice of similarity metric. To this end we propose a new multivariate cost function based on the discretisation of a graph-based mutual information measure. Results are presented for alignment driven by scalar metrics of curvature and myelination, and multivariate features derived from functional task performance. These experiments demonstrate the potential of this approach for improving the integration of complementary brain data sets in the future.

Keywords

Markov Random Field Geodesic Distance Rotation Matrice Surface Registration Multivariate Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4), 272–284 (1999)CrossRefGoogle Scholar
  2. 2.
    Yeo, T., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark free surface registration. IEEE Transaction on Medicial Imaging 29(3), 650–668 (2010)CrossRefGoogle Scholar
  3. 3.
    Fischl, B., Rajendran, R., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T.T., Mohlberg, H., Amunts, K., Zilles, K.: Cortical folding patterns and predicting cytoarchitecture. Cerebral Cortex 18, 1973–1983 (2008)CrossRefGoogle Scholar
  4. 4.
    Petrović, A., Smith, S.M., Menke, R.A., Jenkinson, M.: Methods for tractography-driven surface registration of brain structures. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 705–712. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Glocker, B., Komodakis, N., Paragios, N., Navab, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12, 731–741 (2008)CrossRefGoogle Scholar
  6. 6.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transaction on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  7. 7.
    Boykov, Y., Veksler, O., Sabik, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1–17 (2001)CrossRefGoogle Scholar
  8. 8.
    Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 115–122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Cobzas, D., Sen, A.: Random walks for deformable image registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 557–565. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Neemuchwala, H.F.: Entropic graphs for image registration. PhD thesis, University of Michigan (2005)Google Scholar
  11. 11.
    Staring, M., van der Heide, U.A., Klein, S., Viergever, M.A., Pluim, J.P.W.: Registration of cervical mri using multifeature mutual information. IEEE Transactions on Medical Imaging 28(9), 1412–1421 (2009)CrossRefGoogle Scholar
  12. 12.
    Glocker, B., Komodakis, N., Paragios, N., Navab, N.: Approximated curvature penalty in non-rigid registration using pairwise MRFs. In: Bebis, G., et al. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 1101–1109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kwon, D., Lee, K.J., Yun, I.D., Lee, S.U.: Nonrigid image registration using dynamic higher-order MRF model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 373–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. PAMI 29(8) (2007)Google Scholar
  15. 15.
    Komodakis, N., Tziritas, G.: Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal dual strategies. Computer Vision and Image Understanding 112(1), 14–29 (2008)CrossRefGoogle Scholar
  16. 16.
    Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Glasser, M.F., Van Essen, D.C.: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neuroscience 31(32), 11597–11616 (2011)CrossRefGoogle Scholar
  18. 18.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma C. Robinson
    • 1
  • Saad Jbabdi
    • 1
  • Jesper Andersson
    • 1
  • Stephen Smith
    • 1
  • Matthew F. Glasser
    • 2
  • David C. Van Essen
    • 2
  • Greg Burgess
    • 2
  • Michael P. Harms
    • 3
  • Deanna M. Barch
    • 4
  • Mark Jenkinson
    • 1
  1. 1.FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
  2. 2.Department of Anatomy and NeurobiologyWashington University School of MedicineSt LouisUSA
  3. 3.Department of PsychiatryWashington University School of MedicineSt LouisUSA
  4. 4.Department of PsychologyWashington UniversitySt LouisUSA

Personalised recommendations