Cohort-Level Brain Mapping: Learning Cognitive Atoms to Single Out Specialized Regions

  • Gaël Varoquaux
  • Yannick Schwartz
  • Philippe Pinel
  • Bertrand Thirion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Functional Magnetic Resonance Imaging (fMRI) studies map the human brain by testing the response of groups of individuals to carefully-crafted and contrasted tasks in order to delineate specialized brain regions and networks. The number of functional networks extracted is limited by the number of subject-level contrasts and does not grow with the cohort. Here, we introduce a new group-level brain mapping strategy to differentiate many regions reflecting the variety of brain network configurations observed in the population. Based on the principle of functional segregation, our approach singles out functionally-specialized brain regions by learning group-level functional profiles on which the response of brain regions can be represented sparsely. We use a dictionary-learning formulation that can be solved efficiently with on-line algorithms, scaling to arbitrary large datasets. Importantly, we model inter-subject correspondence as structure imposed in the estimated functional profiles, integrating a structure-inducing regularization with no additional computational cost. On a large multi-subject study, our approach extracts a large number of brain networks with meaningful functional profiles.


Independent Component Analysis Independent Component Analysis Functional Network Sparse Code Dictionary Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bickel, P., Ritov, Y., Tsybakov, A.: Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics 37, 1705 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from fMRI data using independent component analysis. Hum. Brain Mapp. 14, 140 (2001)CrossRefGoogle Scholar
  3. 3.
    Chen, G.H., Fedorenko, E.G., Kanwisher, N.G., Golland, P.: Deformation-invariant sparse coding for modeling spatial variability of functional patterns in the brain. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds.) MLINI 2011. LNCS (LNAI), vol. 7263, pp. 68–75. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist. 32, 407 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Knops, A., Thirion, B., Hubbard, E., Michel, V., Dehaene, S.: Recruitment of an area involved in eye movements during mental arithmetic. Science 324, 1583 (2009)CrossRefGoogle Scholar
  6. 6.
    Laird, A., Fox, P., Eickhoff, S., et al.: Behavioral interpretations of intrinsic connectivity networks. J. Cog. Neurosci. 23, 4022 (2011)CrossRefGoogle Scholar
  7. 7.
    Lashkari, D., Golland, P.: Exploratory fMRI analysis without spatial normalization. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 398–410. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11, 19 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Noppeney, U., Friston, K., Price, C.: Degenerate neuronal systems sustaining cognitive functions. J. Anat. 205, 433 (2004)CrossRefGoogle Scholar
  10. 10.
    Petersen, R., Aisen, P., Beckett, L., et al.: Alzheimer’s disease neuroimaging initiative (ADNI) clinical characterization. Neurology 74, 201 (2010)CrossRefGoogle Scholar
  11. 11.
    Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Le Bihan, D., Poline, J., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neuroscience 8, 91 (2007)CrossRefGoogle Scholar
  12. 12.
    Sabuncu, M., Singer, B., Conroy, B., Bryan, R., Ramadge, P., Haxby, J.: Function-based intersubject alignment of human cortical anatomy. Cereb. Cortex 20, 130 (2010)CrossRefGoogle Scholar
  13. 13.
    Seeley, W., Menon, V., Schatzberg, A., Keller, J., Glover, G., Kenna, H., Reiss, A., Greicius, M.: Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349 (2007)CrossRefGoogle Scholar
  14. 14.
    Szabó, Z., Póczos, B., Lorincz, A.: Online group-structured dictionary learning. In: CVPR, p. 2865 (2011)Google Scholar
  15. 15.
    Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Map. 27, 678 (2006)CrossRefGoogle Scholar
  16. 16.
    Thyreau, B., Schwartz, Y., Thirion, B., et al.: Very large fMRI study using the imagen database: Sensitivity–specificity and population effect modeling in relation to the underlying anatomy. NeuroImage 61, 295 (2012)CrossRefGoogle Scholar
  17. 17.
    Tononi, G., McIntosh, A., Russell, D., Edelman, G.: Functional clustering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133 (1998)CrossRefGoogle Scholar
  18. 18.
    Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Worsley, K., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F., Evans, A.: A general statistical analysis for fMRI data. NeuroImage 15, 1 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gaël Varoquaux
    • 1
    • 2
    • 3
  • Yannick Schwartz
    • 1
    • 2
  • Philippe Pinel
    • 2
    • 3
  • Bertrand Thirion
    • 1
    • 2
  1. 1.INRIAParietal TeamSaclayFrance
  2. 2.NeuroSpin, CEA SaclayGif-sur-Yvette, cedexFrance
  3. 3.INSERM U992 Cognitive Neuroimaging UnitFrance

Personalised recommendations