Learning from M/EEG Data with Variable Brain Activation Delays

  • Wojciech Zaremba
  • M. Pawan Kumar
  • Alexandre Gramfort
  • Matthew B. Blaschko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Magneto- and electroencephalography (M/EEG) measure the electromagnetic signals produced by brain activity. In order to address the issue of limited signal-to-noise ratio (SNR) with raw data, acquisitions consist of multiple repetitions of the same experiment. An important challenge arising from such data is the variability of brain activations over the repetitions. It hinders statistical analysis such as prediction performance in a supervised learning setup. One such confounding variability is the time offset of the peak of the activation, which varies across repetitions. We propose to address this misalignment issue by explicitly modeling time shifts of different brain responses in a classification setup. To this end, we use the latent support vector machine (LSVM) formulation, where the latent shifts are inferred while learning the classifier parameters. The inferred shifts are further used to improve the SNR of the M/EEG data, and to infer the chronometry and the sequence of activations across the brain regions that are involved in the experimental task. Results are validated on a long term memory retrieval task, showing significant improvement using the proposed latent discriminative method.


magnetoencephalography (MEG) electroencephalograpy (EEG) Latent SVM classification independant component analysis (ICA) functional connectivity single-trial variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R., Fournier, J.: Sobolev Spaces: Pure and Applied Mathematics. Academic Press (2003)Google Scholar
  2. 2.
    Backus, A., Jensen, O., Meeuwissen, E., van Gerven, M., Dumoulin, S.: Investigating the temporal dynamics of long term memory representation retrieval using multivariate pattern analyses on magnetoencephalography data. MSc thesis (2011)Google Scholar
  3. 3.
    Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)CrossRefGoogle Scholar
  4. 4.
    Bénar, C., Clerc, M., Papadopoulo, T.: Adaptive time-frequency models for single-trial M/EEG analysis. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 458–469. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 34(4), 537–541 (1995)CrossRefGoogle Scholar
  6. 6.
    Blankertz, B., Muller, K., Curio, G., Vaughan, T., Schalk, G., Wolpaw, J., Schlogl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., et al.: The bci competition 2003: progress and perspectives in detection and discrimination of eeg single trials. IEEE Transactions on Biomedical Engineering 51(6), 1044–1051 (2004)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Akutagawa, M., Katayama, M., Zhang, Q., Kinouchi, Y.: Ica based multiple brain sources localization. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, pp. 1879–1882 (2008)Google Scholar
  8. 8.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 273–297 (1995)Google Scholar
  9. 9.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  10. 10.
    Gramfort, A., Strohmeier, D., Haueisen, J., Hamalainen, M., Kowalski, M.: Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 600–611. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Held, K., Kops, E., Krause, B., Wells III, W., Kikinis, R., Muller-Gartner, H.: Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging 16(6), 878–886 (1997)CrossRefGoogle Scholar
  12. 12.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience (2001)Google Scholar
  13. 13.
    Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural svms. Machine Learning 77(1), 27–59 (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jung, T., Makeig, S., Mckeown, M.J., Bell, A.J., won Lee, T., Sejnowski, T.J.: Imaging brain dynamics using independent component analysis. Proceedings of the IEEE 89, 1107–1122 (2001)CrossRefGoogle Scholar
  15. 15.
    Listgarten, J., Neal, R.M., Roweis, S.T., Emili, A.: Multiple alignment of continuous time series. In: Advances in Neural Information Processing Systems, pp. 817–824. MIT Press (2005)Google Scholar
  16. 16.
    Polich, J.: Updating p300: An integrative theory of P3a and P3b. Clinical Neurophysiology 118(10), 2128 (2007)CrossRefGoogle Scholar
  17. 17.
    Sriperumbudur, B., Lanckriet, G.: On the convergence of the concave-convex procedure. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 1759–1767 (2009)Google Scholar
  18. 18.
    Thulasidas, M., Guan, C., Wu, J.: Robust classification of EEG signal for brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(1), 24–29 (2006)CrossRefGoogle Scholar
  19. 19.
    Woody, C.: Characterization of an adaptive filter for the analysis of variable latency neuroelectrical signals. Medical and Biological Engineering 5, 539–553 (1967)CrossRefGoogle Scholar
  20. 20.
    Yu, C.N.J., Joachims, T.: Learning structural SVMs with latent variables. In: Proceedings of the International Conference on Machine Learning, ICML (2009)Google Scholar
  21. 21.
    Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Computation 15(4), 915–936 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wojciech Zaremba
    • 1
    • 2
  • M. Pawan Kumar
    • 1
    • 2
    • 3
  • Alexandre Gramfort
    • 4
    • 5
  • Matthew B. Blaschko
    • 1
    • 2
    • 3
  1. 1.Center for Visual ComputingÉcole Centrale ParisChâtenay-MalabryFrance
  2. 2.INRIA Saclay–Île-de-FranceFrance
  3. 3.LIGM (UMR CNRS), École des Ponts ParisTechUniversité Paris-EstFrance
  4. 4.CNRS LTCIInstitut Mines-Télécom, Télécom ParisTechParisFrance
  5. 5.CEA/NeurospinGif-Sur-YvetteFrance

Personalised recommendations