Advertisement

The Non-Local Bootstrap – Estimation of Uncertainty in Diffusion MRI

  • Pew-Thian Yap
  • Hongyu An
  • Yasheng Chen
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences.

Keywords

Bootstrap Sample Kernel Regression Diffusion Signal Diffusion Magnetic Resonance Imaging Rician Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)CrossRefGoogle Scholar
  3. 3.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transaction on Medical Imaging 27, 425–441 (2008)Google Scholar
  4. 4.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davison, A., Hinkley, D.: Bootstrap Methods and their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (1997)Google Scholar
  6. 6.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1994)Google Scholar
  7. 7.
    Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1996)Google Scholar
  8. 8.
    Friman, O., Farnebäck, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25, 965–977 (2006)CrossRefGoogle Scholar
  9. 9.
    Härdle, W.: Applied Nonparametric Regression. Cambridge University Press (1992)Google Scholar
  10. 10.
    Härdle, W., Bowman, A.W.: Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands. Journal of the American Statistical Association 83(401), 102–110 (1988)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Schimek, M.G. (ed.) Smoothing and Regression: Approaches, Computation, and Application. Wiley & Sons, Inc., Hoboken (2000)Google Scholar
  12. 12.
    Haroon, H.A., Morris, D.M., Embleton, K.V., Alexander, D.C., Parker, G.J.M.: Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis. IEEE Transaction on Medical Imaging 28(4), 535–550 (2009)CrossRefGoogle Scholar
  13. 13.
    Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)CrossRefGoogle Scholar
  14. 14.
    Jeurissen, B., Leemans, A., Tournier, J.D., Sijbers, J.: Can residual bootstrap reliably estimate uncertainty in fiber orientation obtained by spherical deconvolution from diffusion-weighted MRI? In: Proceedings 14th Annual Meeting of the Organization of Human Brain Mapping (2008)Google Scholar
  15. 15.
    Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Human Brain Mapping 32(3), 461–479 (2011)CrossRefGoogle Scholar
  16. 16.
    Johansen-Berg, H., Behrens, T.E. (eds.): Diffusion MRI — From Quantitative Measurement to In-Vivo Neuroanatomy. Elsevier (2009)Google Scholar
  17. 17.
    Jones, D.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magnetic Resonance in Medicine 49(1), 7–12 (2003)CrossRefGoogle Scholar
  18. 18.
    Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)CrossRefGoogle Scholar
  19. 19.
    Manjón, J., Carbonell-Caballero, J., Lull, J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Medical Image Analysis 12(4), 514–523 (2008)CrossRefGoogle Scholar
  20. 20.
    Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  21. 21.
    Nadaraya, E.: On estimating regression. Theory of Probability and its Applications 9(1), 141–142 (1964)CrossRefGoogle Scholar
  22. 22.
    Porter, D.A., Heidemann, R.M.: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magnetic Resonance in Medicine 62(2), 468–475 (2009)CrossRefGoogle Scholar
  23. 23.
    Ruppert, D., Wand, M.: Multivariate locally weighted least squares regression. The Annals of Statistics 22(3), 1346–1370 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Shi, F., Yap, P.T., Gao, W., Lin, W., Gilmore, J., Shen, D.: Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. NeuroImage 62(3), 1622–1633 (2012)CrossRefGoogle Scholar
  25. 25.
    Silverman, B.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probablilty. Chapman and Hall (1998)Google Scholar
  26. 26.
    Watson, G.: Smooth regression analysis. Sankhyā: The Indian Journal of Statistics Series A 26(4), 359–372 (1964)zbMATHGoogle Scholar
  27. 27.
    Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54(3), 1812–1822 (2010)CrossRefGoogle Scholar
  28. 28.
    Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59(3), 2045–2056 (2012)CrossRefGoogle Scholar
  29. 29.
    Yap, P.T., Fan, Y., Chen, Y., Gilmore, J., Lin, W., Shen, D.: Development trends of white matter connectivity in the first years of life. PLoS ONE 6(9), e24678 (2011)CrossRefGoogle Scholar
  30. 30.
    Yap, P.T., Wu, G., Shen, D.: Human brain connectomics: Networks, techniques, and applications. IEEE Signal Processing Magazine 27(4), 131–134 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pew-Thian Yap
    • 1
  • Hongyu An
    • 1
  • Yasheng Chen
    • 1
  • Dinggang Shen
    • 1
  1. 1.Department of Radiology and Biomedical Research Imaging Center (BRIC)The University of North Carolina at Chapel HillU.S.A.

Personalised recommendations